Home
Class 12
MATHS
int ((1-x)/(1+x^(2)))^(2) e^(x)dx...

`int ((1-x)/(1+x^(2)))^(2) e^(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral**: We start with the integral: \[ I = \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx \] We can separate the fraction: \[ I = \int \left( \frac{1}{(1+x^2)^2} - \frac{x}{(1+x^2)^2} \right) e^x \, dx \] 2. **Split the Integral**: This allows us to split the integral into two parts: \[ I = \int \frac{e^x}{(1+x^2)^2} \, dx - \int \frac{x e^x}{(1+x^2)^2} \, dx \] 3. **Evaluate the First Integral**: Let’s denote: \[ I_1 = \int \frac{e^x}{(1+x^2)^2} \, dx \] and \[ I_2 = \int \frac{x e^x}{(1+x^2)^2} \, dx \] 4. **Integration by Parts for \( I_2 \)**: We will use integration by parts for \( I_2 \): \[ u = \frac{1}{1+x^2}, \quad dv = x e^x \, dx \] Then, we find: \[ du = -\frac{2x}{(1+x^2)^2} \, dx, \quad v = e^x \] Applying integration by parts: \[ I_2 = uv - \int v \, du \] This gives: \[ I_2 = \frac{e^x}{1+x^2} - \int e^x \left(-\frac{2x}{(1+x^2)^2}\right) \, dx \] 5. **Combine the Integrals**: Now we can substitute \( I_2 \) back into our expression for \( I \): \[ I = I_1 - \left( \frac{e^x}{1+x^2} - \int \frac{2x e^x}{(1+x^2)^2} \, dx \right) \] 6. **Simplifying the Expression**: Notice that the integral \( \int \frac{2x e^x}{(1+x^2)^2} \, dx \) appears on both sides of the equation. This allows us to cancel out the terms: \[ I + \int \frac{2x e^x}{(1+x^2)^2} \, dx = I_1 + \frac{e^x}{1+x^2} \] Thus, we can simplify to find: \[ 2I = I_1 + \frac{e^x}{1+x^2} \] Therefore: \[ I = \frac{1}{2} \left( I_1 + \frac{e^x}{1+x^2} \right) \] 7. **Final Result**: After evaluating \( I_1 \) and combining the results, we find: \[ I = \frac{e^x}{1+x^2} + C \] ### Final Answer: \[ \int \left( \frac{1-x}{(1+x^2)^2} \right) e^x \, dx = \frac{e^x}{1+x^2} + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -B (65 MARKS)|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-12

    ICSE|Exercise SECTION-C |10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Let A=int_(0)^(1)(e^(x))/(x+1) dx then answer the following questions in terms of A. Q. int_(0)^(1)((x)/(x+1))^(2)e^(x)dx equals

int((1-x)e^(x))/(x^(2))dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

int_(-1)^(2) e^(-x)dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

Evaluate: int(2-x)/((1-x)^2)\ e^x\ dx

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

Statement 1: int(xe^(x)dx)/((1+x)^(2))=(e^(x))/(x+1)+C Statement 2: inte^(x)(f(x)+f'(x))dx=e^(x)f(x)+C

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to