Home
Class 12
MATHS
If matrix A = [a(i j)](2 xx 2), where a(...

If matrix `A = [a_(i j)]_(2 xx 2)`, where `a_(i j) = {("1 if",i ne j),("0 if",i = j):}` then `A^(2)` is equal to

A

I

B

A

C

Zero matrix

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the matrix \( A \), which is defined as follows: Given: \[ A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 1: Define the matrix \( A \) From the problem statement, we know that: - \( a_{ij} = 0 \) if \( i = j \) - \( a_{ij} = 1 \) if \( i \neq j \) For a \( 2 \times 2 \) matrix, we can explicitly write: \[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] ### Step 3: Perform the matrix multiplication We will calculate each element of the resulting matrix: 1. **First row, first column**: \[ (0 \times 0) + (1 \times 1) = 0 + 1 = 1 \] 2. **First row, second column**: \[ (0 \times 1) + (1 \times 0) = 0 + 0 = 0 \] 3. **Second row, first column**: \[ (1 \times 0) + (0 \times 1) = 0 + 0 = 0 \] 4. **Second row, second column**: \[ (1 \times 1) + (0 \times 0) = 1 + 0 = 1 \] Putting these results together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Result Thus, the square of the matrix \( A \) is: \[ A^2 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If A=[a_(ij)]_(2xx2) where a_(ij)={{:(1",",if, I ne j),(0",", if,i=j):} then A^(2) is equal to

If matrix A=[a_(ij)]_(2x2), where a_(ij)={{:(1"," , i ne j),(0",", i=j):} then A^(3) is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

Given A = [a_(y)]_(2 xx 2) "where " a_(y) = {{:((|-3i + j|)/(2) if i ne j ),((i + j)^(2) If i = j ):} " then " a_(11) + a_(21) =

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is