Home
Class 12
MATHS
There are two values of 'a' which makes...

There are two values of 'a' which makes the value of determinant `|(1,-2,5),(2,a,-1),(0,4,2a)| = 86`, find the sum of these values of 'a'.

A

4

B

`-1`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant and set it equal to 86. We will follow these steps: ### Step 1: Write the determinant We have the determinant given by: \[ D = \begin{vmatrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row: \[ D = 1 \cdot \begin{vmatrix} a & -1 \\ 4 & 2a \end{vmatrix} - (-2) \cdot \begin{vmatrix} 2 & -1 \\ 0 & 2a \end{vmatrix} + 5 \cdot \begin{vmatrix} 2 & a \\ 0 & 4 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} a & -1 \\ 4 & 2a \end{vmatrix} = a \cdot 2a - (-1) \cdot 4 = 2a^2 + 4 \] 2. For the second determinant: \[ \begin{vmatrix} 2 & -1 \\ 0 & 2a \end{vmatrix} = 2 \cdot 2a - (-1) \cdot 0 = 4a \] 3. For the third determinant: \[ \begin{vmatrix} 2 & a \\ 0 & 4 \end{vmatrix} = 2 \cdot 4 - a \cdot 0 = 8 \] ### Step 4: Substitute back into the determinant Now substituting these back into the determinant: \[ D = 1 \cdot (2a^2 + 4) + 2 \cdot (4a) + 5 \cdot 8 \] \[ D = 2a^2 + 4 + 8a + 40 \] \[ D = 2a^2 + 8a + 44 \] ### Step 5: Set the determinant equal to 86 Now we set the determinant equal to 86: \[ 2a^2 + 8a + 44 = 86 \] ### Step 6: Rearrange the equation Rearranging gives: \[ 2a^2 + 8a + 44 - 86 = 0 \] \[ 2a^2 + 8a - 42 = 0 \] ### Step 7: Simplify the equation Dividing the entire equation by 2: \[ a^2 + 4a - 21 = 0 \] ### Step 8: Factor the quadratic equation Now we factor the quadratic: \[ (a + 7)(a - 3) = 0 \] ### Step 9: Find the values of 'a' Setting each factor to zero gives us: \[ a + 7 = 0 \quad \Rightarrow \quad a = -7 \] \[ a - 3 = 0 \quad \Rightarrow \quad a = 3 \] ### Step 10: Find the sum of the values of 'a' Now we find the sum of the two values: \[ -7 + 3 = -4 \] ### Final Answer The sum of the two values of 'a' is: \[ \boxed{-4} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If there are two values of a which makes determinant, Delta=|(1,-2,5),(2,a,-1),(0,4,2a)|=86 then the sum of these number is

If there are two values of a which makes determinant, Delta=|(1,-2,5),(2,a,-1),(0,4,2a)|=86 then the sum of these number is

What is the value of the determinant |(0,2,0),(2,3,4),(4,5,6)| ?

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

(i) Find the value of the determinant |[2,3],[(1)/(2),-(1)/(2)]| .

(x) find the value of the determinant |[1,2,5],[2,4,6],[3,6,7]|

Find the values of the following determinants |{:(12,-10,5),(3,2,-1),(-4,0,3):}|

Find the value of the "determinant" |{:(3,4,7),(-1,6,5),(2,8,10):}|

Find the value of the determinant, |[0,2,7],[1,3,0],[2,0,5]|

(4) Find the value of determinant A= [[-1,2],[-3,-4]]