Home
Class 12
MATHS
If y = 36^(log(6)x), then (dy)/(dx) is...

If `y = 36^(log_(6)x)`, then `(dy)/(dx)` is

A

2x

B

6x

C

36x

D

log 6x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = 36^{\log_6 x} \), we can follow these steps: ### Step 1: Rewrite the base We can express 36 in terms of base 6: \[ 36 = 6^2 \] Thus, we can rewrite \( y \): \[ y = (6^2)^{\log_6 x} \] ### Step 2: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we can simplify \( y \): \[ y = 6^{2 \cdot \log_6 x} \] ### Step 3: Use the logarithmic identity Using the identity \( a^{\log_a b} = b \), we can simplify further: \[ y = x^2 \] ### Step 4: Differentiate \( y \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(x^2) = 2x \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 2x \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If y= log (sin x) , then (dy)/(dx) is

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=log_(e)x+sinx+e^(x)" then "(dy)/(dx) is

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y=e^x log x then (dy)/(dx) is

If y=x^((logx)^log(logx)) then (dy)/(dx)=

If y=log(sece^(x^(2))) , then (dy)/(dx) =

If y="log"(xe^(x)),"then "(dy)/(dx) is