Home
Class 12
MATHS
If f(x) = (x-1)/(x+1), x ne -1, 1, then ...

If `f(x) = (x-1)/(x+1), x ne -1, 1`, then `"fof"^(-1)` is

A

Identity function

B

Even function

C

Odd function

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(f^{-1}(x)) \) where \( f(x) = \frac{x-1}{x+1} \) and \( x \neq -1, 1 \). ### Step 1: Find the inverse function \( f^{-1}(x) \) 1. Start with the equation \( y = f(x) = \frac{x-1}{x+1} \). 2. Cross-multiply to eliminate the fraction: \[ y(x + 1) = x - 1 \] This simplifies to: \[ xy + y = x - 1 \] 3. Rearrange the equation to isolate \( x \): \[ xy - x = -1 - y \] Factor out \( x \): \[ x(y - 1) = -1 - y \] 4. Solve for \( x \): \[ x = \frac{-1 - y}{y - 1} \] 5. Replace \( y \) with \( x \) to express the inverse: \[ f^{-1}(x) = \frac{-1 - x}{x - 1} \] ### Step 2: Substitute \( f^{-1}(x) \) back into \( f(x) \) Now we need to find \( f(f^{-1}(x)) \): 1. Substitute \( f^{-1}(x) \) into \( f(x) \): \[ f\left(f^{-1}(x)\right) = f\left(\frac{-1 - x}{x - 1}\right) \] 2. Using the definition of \( f(x) \): \[ f\left(\frac{-1 - x}{x - 1}\right) = \frac{\frac{-1 - x}{x - 1} - 1}{\frac{-1 - x}{x - 1} + 1} \] 3. Simplify the numerator: \[ \frac{-1 - x - (x - 1)}{x - 1} = \frac{-1 - x - x + 1}{x - 1} = \frac{-2x}{x - 1} \] 4. Simplify the denominator: \[ \frac{-1 - x + (x - 1)}{x - 1} = \frac{-1 - x + x - 1}{x - 1} = \frac{-2}{x - 1} \] 5. Now, combine the results: \[ f(f^{-1}(x)) = \frac{\frac{-2x}{x - 1}}{\frac{-2}{x - 1}} = x \] ### Conclusion Thus, we find that: \[ f(f^{-1}(x)) = x \] ### Final Answer The answer is \( x \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If y = f(x) = (x+2)/(x-1) , x ne1 , then show that x = f(y) .

If a f(x+1)+b f(1/(x+1))=x,x !=-1,a != b, then f(2) is equal to

If f(x) =1- x, x in [-3,3] , then the domain of fof (x) is

If f(x)={{:(,|x|, x le1),(,2-x,x gt 1):} , then fof (x) is equal to

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1