Home
Class 12
MATHS
Prove that sin (cos^(-1) x) = cos (sin^(...

Prove that `sin (cos^(-1) x) = cos (sin^(-1) x)`

Text Solution

Verified by Experts

The correct Answer is:
`y = pm (1)/(sqrt(6))`
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

cos(a sin ^(-1)"1/x)

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that : (cos 7x + cos 5x)/(sin 7x - sin 5x) = cot x

Find the value of : sin (sin^(-1) x + cos^(-1) x)