Home
Class 12
MATHS
Find the value of y, if the matrix A = (...

Find the value of y, if the matrix `A = ((0,2y,z),(x,y,-z),(x,-y,z))` obeys the law `A^(T).A = I`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( y \) from the matrix \( A = \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \) such that \( A^T A = I \), we will follow these steps: ### Step 1: Compute the Transpose of Matrix \( A \) The transpose of matrix \( A \), denoted \( A^T \), is obtained by swapping rows with columns: \[ A^T = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \] **Hint:** Remember that the transpose of a matrix is formed by flipping it over its diagonal. ### Step 2: Compute the Product \( A^T A \) Now, we need to compute the product \( A^T A \): \[ A^T A = \begin{pmatrix} 0 & x & x \\ 2y & y & -y \\ z & -z & z \end{pmatrix} \begin{pmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{pmatrix} \] We will calculate each element of the resulting matrix. ### Step 3: Calculate Each Element of \( A^T A \) 1. **Element (1,1)**: \[ 0 \cdot 0 + x \cdot x + x \cdot x = 2x^2 \] 2. **Element (1,2)**: \[ 0 \cdot 2y + x \cdot y + x \cdot (-y) = 0 \] 3. **Element (1,3)**: \[ 0 \cdot z + x \cdot (-z) + x \cdot z = 0 \] 4. **Element (2,1)**: \[ 2y \cdot 0 + y \cdot x + (-y) \cdot x = 0 \] 5. **Element (2,2)**: \[ 2y \cdot 2y + y \cdot y + (-y) \cdot (-y) = 4y^2 + y^2 + y^2 = 6y^2 \] 6. **Element (2,3)**: \[ 2y \cdot z + y \cdot (-z) + (-y) \cdot z = 2yz - yz - yz = 0 \] 7. **Element (3,1)**: \[ z \cdot 0 + (-z) \cdot x + z \cdot x = 0 \] 8. **Element (3,2)**: \[ z \cdot 2y + (-z) \cdot y + z \cdot (-y) = 2yz - yz - yz = 0 \] 9. **Element (3,3)**: \[ z \cdot z + (-z) \cdot (-z) + z \cdot z = z^2 + z^2 + z^2 = 3z^2 \] Thus, we have: \[ A^T A = \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} \] ### Step 4: Set \( A^T A \) Equal to the Identity Matrix Since \( A^T A = I \), we equate: \[ \begin{pmatrix} 2x^2 & 0 & 0 \\ 0 & 6y^2 & 0 \\ 0 & 0 & 3z^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( 2x^2 = 1 \) 2. \( 6y^2 = 1 \) 3. \( 3z^2 = 1 \) ### Step 5: Solve for \( y \) From the equation \( 6y^2 = 1 \): \[ y^2 = \frac{1}{6} \implies y = \pm \frac{1}{\sqrt{6}} \] ### Final Result Thus, the value of \( y \) is: \[ y = \pm \frac{1}{\sqrt{6}} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Find the values of x,y,z if the matrix A=[[0,2y,z],[x,y,-z],[x,-y,z]] satisfy the equation A^T A=I_3

Find A=[(0,2y,z),(x,y,-z),(x,-y,z)] satisfies A^(T) = A^(-1)

Find the values of x, y, z if the matrix A=[[0, 2y, z],[ x, y,-z],[ x,-y, z]] satisfy the equation A^(prime)A=I .

Find the values of x ,\ \ y\ ,\ z if the matrix A=[0 2y z x y-z x-y z] satisfy the equation A^T\ A=I_3 .

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

|(0,xyz,x-z),(y-x,0,y-z),(z-x,z-y,0)| is equal to……………

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x ,\ y ,\ zdot

Find the values of x,y,z from the following matrix equation : [{:(x+y,x+y+z),(2x+y,0):}]=[{:(3,6),(5,0):}]