Home
Class 12
MATHS
Without expanding at any stage, prove th...

Without expanding at any stage, prove that `|(a-b,1,a),(b-c,1,b),(c-a,1,c)| = |(a,1,b),(b,1,c),(c,1,a)|`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ |(a-b, 1, a), (b-c, 1, b), (c-a, 1, c)| = |(a, 1, b), (b, 1, c), (c, 1, a)| \] we will use properties of determinants without expanding them. ### Step 1: Rewrite the Determinant Let's denote the left-hand side determinant as \( D_1 \) and the right-hand side determinant as \( D_2 \). \[ D_1 = |(a-b, 1, a), (b-c, 1, b), (c-a, 1, c)| \] \[ D_2 = |(a, 1, b), (b, 1, c), (c, 1, a)| \] ### Step 2: Apply Column Operations We will perform column operations on \( D_1 \). Specifically, we will subtract the second column from the first column. \[ D_1 = |(a-b-1, 1, a), (b-c-1, 1, b), (c-a-1, 1, c)| \] ### Step 3: Simplify the First Column This simplifies to: \[ D_1 = |(a-1-b, 1, a), (b-1-c, 1, b), (c-1-a, 1, c)| \] ### Step 4: Factor Out the Common Terms Now, we can factor out \(-1\) from the first column: \[ D_1 = -1 |(b-a, 1, a), (c-b, 1, b), (a-c, 1, c)| \] ### Step 5: Change the Order of Columns Now, we can swap the first and second columns of the determinant, which introduces a negative sign: \[ D_1 = -(-1) |(1, b-a, a), (1, c-b, b), (1, a-c, c)| \] This gives us: \[ D_1 = |(1, b-a, a), (1, c-b, b), (1, a-c, c)| \] ### Step 6: Rearranging the Columns Now we can rearrange the columns to match the form of \( D_2 \): \[ D_1 = |(a, 1, b), (b, 1, c), (c, 1, a)| \] ### Conclusion Thus, we have shown that: \[ |(a-b, 1, a), (b-c, 1, b), (c-a, 1, c)| = |(a, 1, b), (b, 1, c), (c, 1, a)| \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Without expanding at any state, prove that |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=0

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Without expanding at any state, prove that |((1)/(a),a,bc),((1)/(b),b,ca),((1)/(c ),c,ab)|=0

Prove that : |{:(a+b,b+c,c+a),(c,a,b),(1,1,1):}|

Show without expanding at any stage that: |[a+b,b+c,c+a],[b+c,c+a,a+b],[c+a,a+b,b+c]|=2|[a,b,c],[b,c,a],[c,a,b]|

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

Show without expanding at any stage that: |[(a-1)^2, a^2+1, a],[(b-1)^2, b^2+1,b],[(c-1)^2, c^2+1, c]|=0

Without expanding determinant at any stage evaluate |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|

Without expanding at any stage, find the value of the determinant : Delta=|(20,a,b+c),(20,b,a+c),(20,c,a+b)|