Home
Class 12
MATHS
Evaluate : int(0)^((pi)/(2)) log (cot x)...

Evaluate : `int_(0)^((pi)/(2)) log (cot x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} \log(\cot x) \, dx \), we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{2}} \log(\cot x) \, dx \] ### Step 2: Use the Property of Integrals We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = \frac{\pi}{2} \). Thus, \[ I = \int_0^{\frac{\pi}{2}} \log(\cot(\frac{\pi}{2} - x)) \, dx \] ### Step 3: Simplify the Argument We know that: \[ \cot\left(\frac{\pi}{2} - x\right) = \tan x \] So we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{2}} \log(\tan x) \, dx \] ### Step 4: Add the Two Integrals Now we have two expressions for \( I \): \[ I = \int_0^{\frac{\pi}{2}} \log(\cot x) \, dx \] \[ I = \int_0^{\frac{\pi}{2}} \log(\tan x) \, dx \] Adding these two equations gives: \[ 2I = \int_0^{\frac{\pi}{2}} \left( \log(\cot x) + \log(\tan x) \right) \, dx \] ### Step 5: Use Logarithmic Properties Using the property of logarithms, we can combine the logs: \[ \log(\cot x) + \log(\tan x) = \log(\cot x \cdot \tan x) = \log(1) \] Since \( \cot x \cdot \tan x = 1 \). ### Step 6: Evaluate the Integral Thus, we have: \[ 2I = \int_0^{\frac{\pi}{2}} \log(1) \, dx \] Since \( \log(1) = 0 \): \[ 2I = \int_0^{\frac{\pi}{2}} 0 \, dx = 0 \] ### Step 7: Solve for \( I \) Therefore, we find: \[ 2I = 0 \implies I = 0 \] ### Final Answer The value of the integral is: \[ \int_0^{\frac{\pi}{2}} \log(\cot x) \, dx = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Evaluate : int_(0)^(pi/2)log(tanx)dx

Evaluate : int_(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate: int_(0)^(1) log (1/x-1)dx

The value of int_(0)^(pi//2) (sin 8x log cot x)/(cos 2x)dx , is

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx