Home
Class 12
MATHS
Evaluate : int((pi)/(5))^((3pi)/(10))(dx...

Evaluate : `int_((pi)/(5))^((3pi)/(10))(dx)/(tan^(n) x +1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\tan^n x + 1}, \] we can follow these steps: ### Step 1: Change the limits of integration First, we rewrite the limits in terms of a common denominator. We can express \(\frac{\pi}{5}\) and \(\frac{3\pi}{10}\) with a denominator of 10: \[ \frac{\pi}{5} = \frac{2\pi}{10}, \quad \frac{3\pi}{10} = \frac{3\pi}{10}. \] Thus, we can rewrite the integral as: \[ I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{dx}{\tan^n x + 1}. \] ### Step 2: Use the property of integrals We will use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] In our case, \(a = \frac{2\pi}{10}\) and \(b = \frac{3\pi}{10}\). Therefore, we have: \[ I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{dx}{\tan^n\left(\frac{5\pi}{10} - x\right) + 1}. \] ### Step 3: Simplify the integrand Next, we simplify \(\tan\left(\frac{5\pi}{10} - x\right)\): \[ \tan\left(\frac{5\pi}{10} - x\right) = \tan\left(\frac{\pi}{2} - x\right) = \cot x. \] Thus, the integral becomes: \[ I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{dx}{\cot^n x + 1}. \] ### Step 4: Rewrite cotangent in terms of tangent We know that \(\cot x = \frac{1}{\tan x}\), so we can rewrite the integral as: \[ I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{dx}{\left(\frac{1}{\tan x}\right)^n + 1} = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{\tan^n x}{1 + \tan^n x} \, dx. \] ### Step 5: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{dx}{\tan^n x + 1}\) 2. \(I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{\tan^n x}{1 + \tan^n x} \, dx\) Adding these two equations gives: \[ 2I = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} \frac{1 + \tan^n x}{\tan^n x + 1} \, dx = \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} dx. \] ### Step 6: Evaluate the integral The integral on the right simplifies to: \[ \int_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} dx = \left[x\right]_{\frac{2\pi}{10}}^{\frac{3\pi}{10}} = \frac{3\pi}{10} - \frac{2\pi}{10} = \frac{\pi}{10}. \] Thus, we have: \[ 2I = \frac{\pi}{10} \implies I = \frac{\pi}{20}. \] ### Final Answer Therefore, the value of the integral is: \[ I = \frac{\pi}{20}. \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_((pi)/(4))^((3pi)/(4))(x)/(1+sinx)dx

Evaluate : int_(pi/5)^((3pi)/(10))(cosx)/(sinx+cosx)dx

Evaluate int_((-pi)/4)^((pi)/4)sin^2x""dx

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int_(-pi/2)^(2pi)sin^(-1)(sinx)dx

Evaluate int_(pi//6)^(pi//3)(dx)/(1+tan^(n)x)

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(-pi//4)^(pi//4) |sin x|dx