Home
Class 12
MATHS
Evaluate : int(0)^(pi)(|cos x| + |sin x|...

Evaluate : `int_(0)^(pi)(|cos x| + |sin x|)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\pi} (|\cos x| + |\sin x|) \, dx \), we can break it down into two parts: the integral of \( |\cos x| \) and the integral of \( |\sin x| \). ### Step 1: Split the Integral We can write the integral as: \[ I = \int_{0}^{\pi} |\cos x| \, dx + \int_{0}^{\pi} |\sin x| \, dx \] **Hint:** Remember that the absolute value function can change the sign of the function based on the intervals where the function is positive or negative. ### Step 2: Analyze \( |\sin x| \) For \( \sin x \) in the interval \( [0, \pi] \): - \( \sin x \) is non-negative (positive) for \( x \in [0, \pi] \). Thus, we can write: \[ \int_{0}^{\pi} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx \] **Hint:** Since \( \sin x \) is positive in the entire interval from \( 0 \) to \( \pi \), we can drop the absolute value. ### Step 3: Analyze \( |\cos x| \) For \( \cos x \) in the interval \( [0, \pi] \): - \( \cos x \) is positive for \( x \in [0, \frac{\pi}{2}] \) and negative for \( x \in [\frac{\pi}{2}, \pi] \). Thus, we can split the integral: \[ \int_{0}^{\pi} |\cos x| \, dx = \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx \] **Hint:** The negative sign for \( \cos x \) in the second integral accounts for the fact that \( \cos x \) is negative in that interval. ### Step 4: Evaluate the Integrals Now we evaluate each integral separately. 1. **For \( \int_{0}^{\frac{\pi}{2}} \cos x \, dx \)**: \[ \int \cos x \, dx = \sin x \quad \text{so} \quad \int_{0}^{\frac{\pi}{2}} \cos x \, dx = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] 2. **For \( \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx \)**: \[ \int -\cos x \, dx = -\sin x \quad \text{so} \quad \int_{\frac{\pi}{2}}^{\pi} -\cos x \, dx = -\sin(\pi) - (-\sin\left(\frac{\pi}{2}\right)) = 0 - (-1) = 1 \] 3. **For \( \int_{0}^{\pi} \sin x \, dx \)**: \[ \int \sin x \, dx = -\cos x \quad \text{so} \quad \int_{0}^{\pi} \sin x \, dx = -\cos(\pi) - (-\cos(0)) = -(-1) - (-1) = 1 + 1 = 2 \] ### Step 5: Combine the Results Now, we can combine the results: \[ I = \int_{0}^{\pi} |\cos x| \, dx + \int_{0}^{\pi} |\sin x| \, dx = (1 + 1) + 2 = 4 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(pi) |cos x| dx

Evaluate int_(0)^(4pi)|cos x| dx .

Evaluate: int_(0)^(pi//2) cos2x dx

Evaluate : int_(0)^(pi//2) sin x dx

The value of int_(0)^(2pi) |cos x -sin x|dx is

Evaluate int_(0)^(pi)(sin 6x)/(sinx) dx .

int_(0)^(pi) sin 3x dx

Evaluate : int_(0)^(pi//2) (cos x)/(1+sin^(2) x)dx

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx