Home
Class 12
MATHS
If y = sqrt(1+sqrt(1+x^(4))), prove that...

If `y = sqrt(1+sqrt(1+x^(4)))`, prove that `y * (y^(2) - 1)(dy)/(dx) = x^(3)`.

Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y

If y=sqrt(x+1)- sqrt(x-1) , prove that (x^(2)-1)(d^(2)y)/(dx^(2))+x(dy)/(dx)-(y)/(4)=0

If y=sqrt((1-x)/(1+x)), prove that ((1-x^2)dy)/(dx)+y=0

If y=sqrt((1-x)/(1+x)) prove that (1-x^2)(dy)/(dx)+y=0

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .

If y=sqrt(x+sqrt(x+sqrt(x+...tooo))), prove that (dy)/(dx)=1/(2y-1)

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x