Home
Class 12
MATHS
Find graphically the minimum value of Z ...

Find graphically the minimum value of Z = 100x + 50y, subject to the constraints `x + y le 300, 3x + y le 600, y le x + 200, x ge 0, y ge 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( Z = 100x + 50y \) subject to the constraints \( x + y \leq 300 \), \( 3x + y \leq 600 \), \( y \leq x + 200 \), \( x \geq 0 \), and \( y \geq 0 \), we will solve this graphically. ### Step 1: Convert inequalities to equations We first convert the inequalities into equations to find the boundary lines: 1. \( x + y = 300 \) (Equation 1) 2. \( 3x + y = 600 \) (Equation 2) 3. \( y = x + 200 \) (Equation 3) ### Step 2: Find intercepts of each equation - For **Equation 1** \( x + y = 300 \): - When \( x = 0 \), \( y = 300 \) (Point: \( (0, 300) \)) - When \( y = 0 \), \( x = 300 \) (Point: \( (300, 0) \)) - For **Equation 2** \( 3x + y = 600 \): - When \( x = 0 \), \( y = 600 \) (Point: \( (0, 600) \)) - When \( y = 0 \), \( x = 200 \) (Point: \( (200, 0) \)) - For **Equation 3** \( y = x + 200 \): - When \( x = 0 \), \( y = 200 \) (Point: \( (0, 200) \)) - When \( y = 0 \), \( x = -200 \) (not valid since \( x \geq 0 \)) ### Step 3: Plot the lines on a graph We plot the lines based on the intercepts found: - Line from \( (0, 300) \) to \( (300, 0) \) - Line from \( (0, 600) \) to \( (200, 0) \) - Line from \( (0, 200) \) with a slope of 1 (intersects the y-axis at 200) ### Step 4: Identify feasible region The feasible region is where all these inequalities overlap, considering the constraints \( x \geq 0 \) and \( y \geq 0 \). ### Step 5: Find corner points of the feasible region We find the points of intersection of the lines: 1. **Intersection of Equation 1 and Equation 2**: \[ x + y = 300 \\ 3x + y = 600 \] Subtracting the first from the second: \[ 2x = 300 \implies x = 150 \\ y = 300 - 150 = 150 \quad \text{(Point: } (150, 150)\text{)} \] 2. **Intersection of Equation 1 and Equation 3**: \[ x + y = 300 \\ y = x + 200 \] Substituting \( y \): \[ x + (x + 200) = 300 \implies 2x + 200 = 300 \implies 2x = 100 \implies x = 50 \\ y = 50 + 200 = 250 \quad \text{(Point: } (50, 250)\text{)} \] 3. **Intersection of Equation 2 and Equation 3**: \[ 3x + y = 600 \\ y = x + 200 \] Substituting \( y \): \[ 3x + (x + 200) = 600 \implies 4x + 200 = 600 \implies 4x = 400 \implies x = 100 \\ y = 100 + 200 = 300 \quad \text{(Point: } (100, 300)\text{)} \] ### Step 6: Evaluate \( Z \) at each corner point Now we evaluate \( Z \) at the corner points: 1. At \( (0, 600) \): \( Z = 100(0) + 50(600) = 30000 \) 2. At \( (100, 300) \): \( Z = 100(100) + 50(300) = 25000 \) 3. At \( (150, 150) \): \( Z = 100(150) + 50(150) = 22500 \) 4. At \( (300, 0) \): \( Z = 100(300) + 50(0) = 30000 \) ### Step 7: Determine the minimum value The minimum value of \( Z \) occurs at the point \( (150, 150) \) with \( Z = 22500 \). ### Final Answer The minimum value of \( Z \) is \( 22500 \) at the point \( (150, 150) \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 18

    ICSE|Exercise Section - B|10 Videos
  • MODEL TEST PAPER - 17

    ICSE|Exercise Section - C|10 Videos
  • MODEL TEST PAPER - 2

    ICSE|Exercise Section - C|10 Videos

Similar Questions

Explore conceptually related problems

x + 2y le 40, 2x + y le 40, x ge 0, y ge 0

2x + y le 6, x + 2y le 8, x ge 0, y ge 0

x + y le 10, 4x + 3y le 24,x ge 0, y ge 0

Find graphically the minimum value of Z=5x+7y , subject to the constraints given below: 2x+y ge 8, x +2y ge 0 and x, y ge 0

x-y le 2, x + y le 4 , x ge 0, y ge 0

4x + 3y le 60, y ge 2x, x ge 3, x, y ge 0

Determine the maximum value of Z=11x+7y subject to the constraints 2x+y le 6 , x le 2, x ge 0, y ge 0

y - 2x le 1, x + y le 2, x ge 0, y ge 0

Minimise Z = 6x + 3y, subject to the constraints 4x + y ge 80, x + 5y ge 115, 3x + 2y le 150, x ge 0, y ge 0 .

3x + 2y le 12, x ge 1, y ge 2