Home
Class 12
MATHS
Solve [(1,2),(0,0)] [(x,2),(3,3)]=[(7,0)...

Solve `[(1,2),(0,0)] [(x,2),(3,3)]=[(7,0),(1,0)]`, and find the value of x.

A

2

B

0

C

3

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the matrix equation \(\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & 2 \\ 3 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 1 & 0 \end{pmatrix}\), we will follow these steps: ### Step 1: Multiply the matrices We start by multiplying the two matrices on the left side. The multiplication of two matrices is done by taking the dot product of the rows of the first matrix with the columns of the second matrix. The first element of the resulting matrix is calculated as: \[ 1 \cdot x + 2 \cdot 3 = x + 6 \] The second element of the first row is: \[ 1 \cdot 2 + 2 \cdot 3 = 2 + 6 = 8 \] The first element of the second row is: \[ 0 \cdot x + 0 \cdot 3 = 0 \] The second element of the second row is: \[ 0 \cdot 2 + 0 \cdot 3 = 0 \] Thus, the product of the matrices is: \[ \begin{pmatrix} x + 6 & 8 \\ 0 & 0 \end{pmatrix} \] ### Step 2: Set the resulting matrix equal to the given matrix Now we set the resulting matrix equal to the matrix on the right side of the equation: \[ \begin{pmatrix} x + 6 & 8 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 1 & 0 \end{pmatrix} \] ### Step 3: Compare corresponding elements From the equality of the matrices, we can compare the corresponding elements: 1. From the first row, first column: \[ x + 6 = 7 \] 2. From the first row, second column: \[ 8 = 0 \quad \text{(This is not true, indicating we won't use this equation)} \] 3. From the second row, first column: \[ 0 = 1 \quad \text{(This is also not true)} \] 4. From the second row, second column: \[ 0 = 0 \quad \text{(This is true)} \] ### Step 4: Solve for \(x\) Now we solve the equation from the first row: \[ x + 6 = 7 \] Subtracting 6 from both sides gives: \[ x = 7 - 6 = 1 \] ### Final Answer The value of \(x\) is \(1\). ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If |[x,-6,1],[2x,-3,3],[0,1,2]| =0 find the value of x

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

If 2[{:(,3,x),(,0,1):}]+3[{:(,1,3),(,y,2):}]=[{:(,z,-7),(,15,8):}] , find the values of x, y and z.

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

Solve |( 0,0,7), (1,2,3), (0,8,2)|

If [(1,0,0),(0, 0, 1),(0,1,0)][(x),(y),(z)]=[(2),(-1),(3)] , find x ,\ y ,\ z .

If [2x+1 5x0y^2+1]=[x+3 10 0 26] , find the value of (x+y) .

Solve : (4-3x)/(5)+(7-x)/(3)+4(1)/(3)=0 . Hence, find the value of 'p', if 3p-2x+1=0 .

If |[1, x, x^2], [x, x^2, 1], [x^2, 1, x]|=3, then find the value of |[x^3-1, 0, x-x^4], [0, x-x^4, x^3-1], [x-x^4, x^3-1, 0]|