Home
Class 12
MATHS
Value of "tan" (1)/(3) (tan^(-1)x + "tan...

Value of `"tan" (1)/(3) (tan^(-1)x + "tan"^(-1) (1)/(x))`

A

`(1)/(sqrt2)`

B

`(1)/(sqrt3)`

C

`sqrt3`

D

`-sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \[ \tan\left(\frac{1}{3} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x}\right)\right). \] ### Step 1: Use the identity for inverse tangent We know that \[ \tan^{-1} x + \tan^{-1} \frac{1}{x} = \frac{\pi}{2} \] for \( x > 0 \). This is because \( \tan^{-1} x \) and \( \tan^{-1} \frac{1}{x} \) are complementary angles. ### Step 2: Substitute the identity into the expression Substituting this identity into our expression, we have: \[ \tan\left(\frac{1}{3} \left(\frac{\pi}{2}\right)\right). \] ### Step 3: Simplify the expression This simplifies to: \[ \tan\left(\frac{\pi}{6}\right). \] ### Step 4: Calculate the value of \(\tan\left(\frac{\pi}{6}\right)\) We know that \[ \tan\left(\frac{\pi}{6}\right) = \tan(30^\circ) = \frac{1}{\sqrt{3}}. \] ### Final Answer Thus, the value of \[ \tan\left(\frac{1}{3} \left(\tan^{-1} x + \tan^{-1} \frac{1}{x}\right)\right) = \frac{1}{\sqrt{3}}. \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

The values of x satisfying "tan"^(-1) (x+3) -"tan"^(-1) (x-3) = "sin"^(-1)((3)/(5)) are

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))