Home
Class 12
MATHS
If A^(-1) = ((3,1),(-1,2)), find the mat...

If `A^(-1) = ((3,1),(-1,2))`, find the matrix A.

Text Solution

AI Generated Solution

The correct Answer is:
To find the matrix \( A \) given that \( A^{-1} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \), we can follow these steps: ### Step 1: Understand the relationship between \( A \) and \( A^{-1} \) The relationship between a matrix and its inverse is given by the equation: \[ A \cdot A^{-1} = I \] where \( I \) is the identity matrix. ### Step 2: Find the determinant of \( A^{-1} \) The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det} = ad - bc \] For \( A^{-1} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \): - \( a = 3 \) - \( b = 1 \) - \( c = -1 \) - \( d = 2 \) Calculating the determinant: \[ \text{det}(A^{-1}) = (3)(2) - (1)(-1) = 6 + 1 = 7 \] ### Step 3: Find the determinant of \( A \) The determinant of \( A \) is the reciprocal of the determinant of \( A^{-1} \): \[ \text{det}(A) = \frac{1}{\text{det}(A^{-1})} = \frac{1}{7} \] ### Step 4: Find the adjoint of \( A \) The adjoint of a \( 2 \times 2 \) matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Since we know that: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] We can express the adjoint of \( A \) as: \[ \text{adj}(A) = A^{-1} \cdot \text{det}(A) \] Substituting the values we have: \[ \text{adj}(A) = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot \frac{1}{7} = \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} \] ### Step 5: Find the matrix \( A \) Using the adjoint to find \( A \): \[ A = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] Substituting the values: \[ A = 7 \cdot \begin{pmatrix} \frac{3}{7} & \frac{1}{7} \\ -\frac{1}{7} & \frac{2}{7} \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \] ### Final Result Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

[{:(2,1),(1,1):}] find the inverse of matrix

If [(9,-1,4),(-2,1,3)]=A+[(1,2,-1),(0,4,9)], then find the matrix A.

if A=[{:(2,-3),(4,-1):}]and B=[{:(3,0),(-1,2):}], then find matrix C such that 2A-B+3c is a unit matrix.

[{:(1,-1),(2,3):}] find the inverse of matrix

[{:(1,3),(2,7):}] find the inverse of matrix

if A=[{:(1,-4,5),(2,1,-3):}]and B=[{:(2,3,-1),(1,2,3):}] then find a matrix C if 2A+3B -4C is a zero matrix.

If A=[{:(1,-3,2),(2," "0,2):}]" and "B=[{:(2,-1,-1),(1," "0,-1):}] , find a matrix C such that (A+B+C) is a zero matrix.

A={:[(1,2,1),(3,-1,2),(1,0,3)]:},B={:[(1,1,1),(-1,1,1),(2,-2,2)]:} then find matrix X such that 2A+X=2B.

if A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying A A'=9I_(3,) find the value of |a|+|b|.

if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0