Home
Class 12
MATHS
y=10^(10^(x)), find (dy)/(dx)...

`y=10^(10^(x))`, find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = 10^{10^x}\), we can follow these steps: ### Step 1: Rewrite the Function We start with the given function: \[ y = 10^{10^x} \] ### Step 2: Apply the Chain Rule To differentiate \(y\) with respect to \(x\), we use the chain rule. The derivative of \(a^u\) with respect to \(x\) is given by: \[ \frac{d}{dx}(a^u) = a^u \cdot \ln(a) \cdot \frac{du}{dx} \] Here, \(a = 10\) and \(u = 10^x\). ### Step 3: Differentiate the Outer Function First, we differentiate the outer function: \[ \frac{dy}{dx} = 10^{10^x} \cdot \ln(10) \cdot \frac{d}{dx}(10^x) \] ### Step 4: Differentiate the Inner Function Next, we need to differentiate the inner function \(10^x\): \[ \frac{d}{dx}(10^x) = 10^x \cdot \ln(10) \] ### Step 5: Substitute Back Now, we substitute this back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 10^{10^x} \cdot \ln(10) \cdot (10^x \cdot \ln(10)) \] ### Step 6: Simplify the Expression We can simplify this expression: \[ \frac{dy}{dx} = 10^{10^x} \cdot 10^x \cdot (\ln(10))^2 \] This can be written as: \[ \frac{dy}{dx} = 10^{10^x + x} \cdot (\ln(10))^2 \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = 10^{10^x + x} \cdot (\ln(10))^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

y=e^(x) find (dy)/(dx)

If y=(e^(x))/(sinx) , find (dy)/(dx)

y=x^n , Find (dy)/dx

If y=x^x , find (dy)/(dx) .

If y=x^(sin x), then find (dy)/(dx)

If x=10(t-sint) , y=12(1-cost) , find (dy)/(dx) .

If x^y=y^x , find (dy)/(dx) .

If (cosx)^y=(cosy)^x , find (dy)/(dx)

If x^y=y^x ,then find (dy)/(dx)

If y=x^(x) then Find (dy)/(dx)