Home
Class 12
MATHS
Evaluate: lim(x rarr 0) (sin (log (1 + 2...

Evaluate: `lim_(x rarr 0) (sin (log (1 + 2x)))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{x}, \] we can use some known limits and properties of logarithms and trigonometric functions. ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{x}. \] ### Step 2: Use the known limit for sine We know that \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1. \] To use this, we need to express our limit in a form that allows us to apply this limit. We can rewrite the limit as follows: \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{\log(1 + 2x)} \cdot \frac{\log(1 + 2x)}{x}. \] ### Step 3: Analyze the first part Now, we can analyze the first part: \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{\log(1 + 2x)}. \] As \(x \to 0\), \(\log(1 + 2x) \to \log(1) = 0\), so we can apply the known limit: \[ \lim_{u \to 0} \frac{\sin(u)}{u} = 1. \] Thus, \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{\log(1 + 2x)} = 1. \] ### Step 4: Analyze the second part Next, we need to evaluate the second part: \[ \lim_{x \to 0} \frac{\log(1 + 2x)}{x}. \] Using the known limit \[ \lim_{x \to 0} \frac{\log(1 + x)}{x} = 1, \] we can adapt this for \(\log(1 + 2x)\): \[ \lim_{x \to 0} \frac{\log(1 + 2x)}{x} = \lim_{x \to 0} \frac{\log(1 + 2x)}{2x} \cdot 2 = 2. \] ### Step 5: Combine the results Now we can combine our results: \[ \lim_{x \to 0} \frac{\sin(\log(1 + 2x))}{x} = \lim_{x \to 0} \left( \frac{\sin(\log(1 + 2x))}{\log(1 + 2x)} \cdot \frac{\log(1 + 2x)}{x} \right) = 1 \cdot 2 = 2. \] ### Final Answer Thus, the limit is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x rarr 0)""(sin x^(@))/(x)

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

1) Evaluate lim_(x rarr0)(|x|)/(x)

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(x-sin x)/(tan^(2)x)

lim_(x rarr0)x(cosec x)

Usinfg L' Hospital's rule, evaluate : lim_(xrarr0)(xe^(x)-"log"(1+x))/x^(2)

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

7. lim_(x rarr0)(x(log x)^(2))/(1+x+x^(2))

lim_(x rarr0)(x-sin x)/(tan^(3)x)