Home
Class 12
MATHS
Evaluate: int e^(x) (1 + tan x + tan^(2)...

Evaluate: `int e^(x) (1 + tan x + tan^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^x (1 + \tan x + \tan^2 x) \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int e^x (1 + \tan x + \tan^2 x) \, dx \] ### Step 2: Recognize the structure Notice that \( 1 + \tan x + \tan^2 x \) can be rewritten using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ 1 + \tan x + \tan^2 x = \tan x + \sec^2 x \] ### Step 3: Use the formula for integration We can use the formula for integration: \[ \int e^x f(x) + e^x f'(x) \, dx = e^x f(x) + C \] where \( f(x) = \tan x \) and \( f'(x) = \sec^2 x \). ### Step 4: Apply the formula Now we can apply the formula: \[ I = \int e^x \left( \tan x + \sec^2 x \right) \, dx = e^x \tan x + C \] ### Step 5: Final result Thus, the evaluated integral is: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = e^x \tan x + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int ((1)/(1+tan x))dx

Evaluate: int e^(x) (tan x + log sec x) dx .

int (tan^(-1)x)dx

Evaluate int tan^(3)x dx

Evaluate int tan^(-1) x dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

int e^(2x) " (tan x+1)"^(2) dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate: inte^x(1+tanx+tan^2x)dx