Home
Class 12
MATHS
Evaluate: int cos^(3)x. e^(log sin x)dx...

Evaluate: `int cos^(3)x. e^(log sin x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos^3 x \cdot e^{\log(\sin x)} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral Using the property of logarithms and exponentials, we know that \( e^{\log(a)} = a \). Thus, we can rewrite the integral: \[ e^{\log(\sin x)} = \sin x \] So, the integral becomes: \[ \int \cos^3 x \cdot \sin x \, dx \] **Hint:** Remember that \( e^{\log(a)} = a \) for any positive \( a \). ### Step 2: Substitution Let \( t = \sin x \). Then, the derivative \( dt = \cos x \, dx \), which implies \( dx = \frac{dt}{\cos x} \). We also need to express \( \cos^3 x \) in terms of \( t \): \[ \cos^2 x = 1 - \sin^2 x = 1 - t^2 \] Thus, \[ \cos^3 x = \cos^2 x \cdot \cos x = (1 - t^2) \cdot \sqrt{1 - t^2} \] However, since we need \( \cos^3 x \) and \( \cos x \, dx \) in terms of \( t \), we can express: \[ \cos^3 x \cdot \sin x \, dx = (1 - t^2) \cdot \cos x \cdot dt \] **Hint:** Use the substitution \( t = \sin x \) to simplify the integral. ### Step 3: Rewrite the Integral Now, substituting \( \sin x = t \) and \( \cos x \, dx = dt \): \[ \int \cos^3 x \cdot \sin x \, dx = \int (1 - t^2) t \, dt \] This simplifies to: \[ \int (t - t^3) \, dt \] **Hint:** After substitution, rewrite the integral in terms of \( t \). ### Step 4: Integrate Now we can integrate term by term: \[ \int (t - t^3) \, dt = \frac{t^2}{2} - \frac{t^4}{4} + C \] **Hint:** Remember to apply the power rule for integration. ### Step 5: Back Substitute Now, substitute back \( t = \sin x \): \[ \frac{\sin^2 x}{2} - \frac{\sin^4 x}{4} + C \] **Hint:** Always substitute back to the original variable after integration. ### Final Result Thus, the evaluated integral is: \[ \int \cos^3 x \cdot e^{\log(\sin x)} \, dx = \frac{\sin^2 x}{2} - \frac{\sin^4 x}{4} + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

The value of : int"cos"^(2) xe^("log""sin"x)dx is :

int cos^(3) x. sin x dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate: int e^(x) (tan x + log sec x) dx .

Evaluate: int(dx)/(cos^(3)xsqrt(2sin2x))

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx