Home
Class 12
MATHS
Evaluate: int (x^(4) +1)/(x^(6) + 1)dx...

Evaluate: `int (x^(4) +1)/(x^(6) + 1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x^4 + 1}{x^6 + 1} \, dx \), we will follow a systematic approach. ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{x^4 + 1}{x^6 + 1} \, dx \] ### Step 2: Multiply by a Suitable Form To simplify the integrand, we can multiply the numerator and the denominator by \( x^2 + 1 \): \[ I = \int \frac{(x^4 + 1)(x^2 + 1)}{(x^6 + 1)(x^2 + 1)} \, dx \] ### Step 3: Expand the Numerator Now, we expand the numerator: \[ (x^4 + 1)(x^2 + 1) = x^6 + x^4 + x^2 + 1 \] So, we have: \[ I = \int \frac{x^6 + x^4 + x^2 + 1}{(x^6 + 1)(x^2 + 1)} \, dx \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ I = \int \frac{1}{x^2 + 1} \, dx + \int \frac{x^2}{x^6 + 1} \, dx \] ### Step 5: Evaluate the First Integral The first integral is straightforward: \[ \int \frac{1}{x^2 + 1} \, dx = \tan^{-1}(x) + C_1 \] ### Step 6: Evaluate the Second Integral For the second integral, we can use the substitution \( x^3 = t \), which gives us \( 3x^2 \, dx = dt \) or \( dx = \frac{dt}{3x^2} \): \[ \int \frac{x^2}{x^6 + 1} \, dx = \int \frac{x^2}{t^2 + 1} \cdot \frac{dt}{3x^2} = \frac{1}{3} \int \frac{1}{t^2 + 1} \, dt \] This integral evaluates to: \[ \frac{1}{3} \tan^{-1}(t) + C_2 = \frac{1}{3} \tan^{-1}(x^3) + C_2 \] ### Step 7: Combine the Results Now, we combine the results of both integrals: \[ I = \tan^{-1}(x) + \frac{1}{3} \tan^{-1}(x^3) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{x^4 + 1}{x^6 + 1} \, dx = \tan^{-1}(x) + \frac{1}{3} \tan^{-1}(x^3) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^4+1)/(x^2+1)dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4-1)dx

Evaluate: int1/(x^4+1)dx

Evaluate : int (x)/(1+x^(4)) "dx "

Evaluate : int (x)/(1+x^(4)) "dx "

Evaluate : int (1)/(4+x^(2)) " dx "

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int(x^2+1)/(x^4+1)dx

Evaluate: int((x^4-x)^(1//4))/(x^5)\ dx