Home
Class 12
MATHS
Evaluate: int(0)^(3) (2x^(2) +3x + 5)dx,...

Evaluate: `int_(0)^(3) (2x^(2) +3x + 5)dx`, expressing as a limit of sum

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{3} (2x^{2} + 3x + 5) \, dx \) and express it as a limit of sums, we will follow these steps: ### Step 1: Define the integral as a limit of Riemann sums The integral can be expressed as a limit of sums using the definition of the Riemann integral. We divide the interval \([0, 3]\) into \(n\) equal subintervals, each of width \(\Delta x = \frac{3 - 0}{n} = \frac{3}{n}\). ### Step 2: Determine the sample points We can choose the right endpoints of the subintervals as our sample points. The right endpoint for the \(i\)-th subinterval is given by: \[ x_i = 0 + i \Delta x = \frac{3i}{n} \] ### Step 3: Write the Riemann sum The Riemann sum \(S_n\) for the function \(f(x) = 2x^2 + 3x + 5\) is given by: \[ S_n = \sum_{i=1}^{n} f(x_i) \Delta x \] Substituting \(f(x_i)\) and \(\Delta x\): \[ S_n = \sum_{i=1}^{n} \left(2\left(\frac{3i}{n}\right)^{2} + 3\left(\frac{3i}{n}\right) + 5\right) \cdot \frac{3}{n} \] ### Step 4: Simplify the expression Now we simplify \(S_n\): \[ S_n = \sum_{i=1}^{n} \left(2 \cdot \frac{9i^2}{n^2} + 3 \cdot \frac{3i}{n} + 5\right) \cdot \frac{3}{n} \] \[ = \sum_{i=1}^{n} \left(\frac{27i^2}{n^2} + \frac{9i}{n} + 15\right) \cdot \frac{3}{n} \] \[ = \frac{3}{n} \sum_{i=1}^{n} \left(\frac{27i^2}{n^2} + \frac{9i}{n} + 15\right) \] ### Step 5: Distribute the sum Distributing the sum gives: \[ S_n = \frac{3}{n} \left(\frac{27}{n^2} \sum_{i=1}^{n} i^2 + \frac{9}{n} \sum_{i=1}^{n} i + 15n\right) \] ### Step 6: Use formulas for sums Using the formulas: \[ \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \] we substitute these into our expression for \(S_n\): \[ S_n = \frac{3}{n} \left(\frac{27}{n^2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{9}{n} \cdot \frac{n(n+1)}{2} + 15n\right) \] ### Step 7: Take the limit as \(n \to \infty\) Now, we take the limit as \(n\) approaches infinity: \[ \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{3}{n} \left(\frac{27(n+1)(2n+1)}{6n} + \frac{9(n+1)}{2} + 15n\right)\right) \] ### Step 8: Evaluate the limit After simplifying and evaluating the limit, we find: \[ = \frac{3}{n} \left(\frac{27(2 + \frac{1}{n})(1 + \frac{1}{n})}{6} + \frac{9(1 + \frac{1}{n})}{2} + 15\right) \] As \(n \to \infty\), the terms involving \(\frac{1}{n}\) vanish, leading to: \[ = \frac{3}{n} \left(\frac{27 \cdot 2}{6} + \frac{9}{2} + 15\right) \] Calculating this gives the final result. ### Final Result The evaluated integral is: \[ \int_{0}^{3} (2x^{2} + 3x + 5) \, dx = \frac{93}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(3)(x^(2)-4)dx

Evaluate : int _1^(3) (x^(2) +5x) dx , expressing as a limit of sum.

Evaluate int _(0)^(2) x^3 dx

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

Evaluate : int_(0)^(1) (1-x)^(3//2) dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

Evaluate: int_0^1(3x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx