Home
Class 12
MATHS
Using elementary transformation, find th...

Using elementary transformation, find the inverse of the following matrix: `((1,3,-2),(-3,0,-5),(2,5,0))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{pmatrix} \) using elementary transformations, we will augment the matrix \( A \) with the identity matrix \( I \) and perform row operations until we transform \( A \) into \( I \). The steps are as follows: ### Step 1: Augment the Matrix We start by writing the augmented matrix \( [A | I] \): \[ \begin{pmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ -3 & 0 & -5 & | & 0 & 1 & 0 \\ 2 & 5 & 0 & | & 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Row Operations We will perform row operations to convert the left side into the identity matrix. 1. **R2 = R2 + 3R1** (to eliminate the first element of R2): \[ R2 = (-3 + 3 \cdot 1, 0 + 3 \cdot 3, -5 + 3 \cdot -2 | 0 + 3 \cdot 1, 1 + 3 \cdot 0, 0 + 3 \cdot 0) \] This gives: \[ R2 = (0, 9, -11 | 3, 1, 0) \] 2. **R3 = R3 - 2R1** (to eliminate the first element of R3): \[ R3 = (2 - 2 \cdot 1, 5 - 2 \cdot 3, 0 - 2 \cdot -2 | 0 - 2 \cdot 1, 0 - 2 \cdot 0, 1 - 2 \cdot 0) \] This gives: \[ R3 = (0, -1, 4 | -2, 0, 1) \] Now the augmented matrix looks like: \[ \begin{pmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & 9 & -11 & | & 3 & 1 & 0 \\ 0 & -1 & 4 & | & -2 & 0 & 1 \end{pmatrix} \] ### Step 3: Further Row Operations 3. **R2 = R2 / 9** (to make the leading coefficient of R2 equal to 1): \[ R2 = (0, 1, -\frac{11}{9} | \frac{1}{3}, \frac{1}{9}, 0) \] 4. **R3 = R3 + R2** (to eliminate the second element of R3): \[ R3 = (0, 0, \frac{25}{9} | -\frac{5}{3}, \frac{1}{9}, 1) \] Now the augmented matrix looks like: \[ \begin{pmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & -\frac{11}{9} & | & \frac{1}{3} & \frac{1}{9} & 0 \\ 0 & 0 & \frac{25}{9} & | & -\frac{5}{3} & \frac{1}{9} & 1 \end{pmatrix} \] 5. **R3 = R3 / \frac{25}{9}** (to make the leading coefficient of R3 equal to 1): \[ R3 = (0, 0, 1 | -\frac{3}{5}, \frac{1}{25}, \frac{9}{25}) \] ### Step 4: Back Substitution 6. **R2 = R2 + \frac{11}{9}R3** (to eliminate the third element of R2): \[ R2 = (0, 1, 0 | \frac{1}{3} - \frac{11}{9} \cdot -\frac{3}{5}, \frac{1}{9} + \frac{11}{9} \cdot \frac{1}{25}, \frac{0}{9}) \] 7. **R1 = R1 - 3R2 + 2R3** (to eliminate the second and third elements of R1): \[ R1 = (1, 0, 0 | 1 - 3 \cdot \frac{1}{3} + 2 \cdot -\frac{3}{5}, 0 + 3 \cdot \frac{1}{9} + 2 \cdot \frac{1}{25}, 0) \] ### Final Augmented Matrix After performing all the necessary row operations, we will arrive at: \[ \begin{pmatrix} 1 & 0 & 0 & | & \text{a11} & \text{a12} & \text{a13} \\ 0 & 1 & 0 & | & \text{b11} & \text{b12} & \text{b13} \\ 0 & 0 & 1 & | & \text{c11} & \text{c12} & \text{c13} \end{pmatrix} \] Where \( \text{aij}, \text{bij}, \text{cij} \) are the elements of the inverse matrix. ### Conclusion The inverse of the matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} 1 & -\frac{2}{5} & -\frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{1}{25} \\ -\frac{3}{5} & \frac{11}{25} & \frac{9}{25} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformations, find the inverse of the matrix [1 3 2 7]

Using elementary transformation find the inverse of the matrix : A=((1, -3,2),(3, 0, 1),(-2, -1, 0))

Using elementary transformations, find the inverse of the matrix [[1,-1],[ 2, 3]]

Using elementary transformations, find the inverse of the matrix [[1, 3],[ 2, 7]]

Using elementary transformations find the inverse of the following matrices [{:( 2,-3,3),(2,2,3),(3,-2,2):}]

Using elementary transformations, find the inverse of the matrix [[1, 3,-2],[-3, 0,-5],[ 2, 5, 0]]

Using elementary transformations, find the inverse of the matrix. ({:(0,0,-1),(3,4,5),(-2,-4,-7):})

Using elementary row operations, find the inverse of the following matrix: [[2,5],[1, 3]]

Using elementary transformations, find the inverse of the matrix [[3, 1], [5, 2]]