Home
Class 12
MATHS
Evaluate: int cos^(-1) sqrt((x)/(x+1))dx...

Evaluate: `int cos^(-1) sqrt((x)/(x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos^{-1} \left( \sqrt{\frac{x}{x+1}} \right) dx \), we will use a trigonometric substitution. Here’s a step-by-step solution: ### Step 1: Substitution Let \( x = \cot^2 \theta \). Then, we differentiate to find \( dx \): \[ dx = 2 \cot \theta (-\csc^2 \theta) d\theta = -2 \cot \theta \csc^2 \theta d\theta \] ### Step 2: Simplifying the Integral Now, substituting \( x \) into the integral: \[ \sqrt{\frac{x}{x+1}} = \sqrt{\frac{\cot^2 \theta}{\cot^2 \theta + 1}} = \sqrt{\frac{\cot^2 \theta}{\csc^2 \theta}} = \sqrt{\cos^2 \theta} = \cos \theta \] Thus, we have: \[ \cos^{-1} \left( \sqrt{\frac{x}{x+1}} \right) = \cos^{-1}(\cos \theta) = \theta \] ### Step 3: Substituting Back into the Integral Now, substituting everything back into the integral: \[ \int \cos^{-1} \left( \sqrt{\frac{x}{x+1}} \right) dx = \int \theta (-2 \cot \theta \csc^2 \theta) d\theta \] This simplifies to: \[ -2 \int \theta \cot \theta \csc^2 \theta d\theta \] ### Step 4: Integration by Parts Using integration by parts, let: - \( u = \theta \) (thus \( du = d\theta \)) - \( dv = \cot \theta \csc^2 \theta d\theta \) Now, we need to find \( v \): \[ v = \int \cot \theta \csc^2 \theta d\theta \] Using the identity \( \frac{d}{d\theta}(\cot \theta) = -\csc^2 \theta \), we find: \[ v = -\frac{1}{2} \cot^2 \theta \] ### Step 5: Applying Integration by Parts Formula Now applying the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] We have: \[ -2 \left( \theta \left(-\frac{1}{2} \cot^2 \theta\right) - \int \left(-\frac{1}{2} \cot^2 \theta\right) d\theta \right) \] This simplifies to: \[ \cot^2 \theta \theta + \int \frac{1}{2} \cot^2 \theta d\theta \] ### Step 6: Evaluating the Remaining Integral The integral \( \int \cot^2 \theta d\theta \) can be evaluated using the identity \( \cot^2 \theta = \csc^2 \theta - 1 \): \[ \int \cot^2 \theta d\theta = \int (\csc^2 \theta - 1) d\theta = -\cot \theta - \theta \] Thus, we have: \[ \int \frac{1}{2} \cot^2 \theta d\theta = -\frac{1}{2} \cot \theta - \frac{1}{2} \theta \] ### Step 7: Final Expression Combining everything, we get: \[ \cot^2 \theta \theta + \left(-\frac{1}{2} \cot \theta - \frac{1}{2} \theta\right) \] Substituting back \( \theta = \cot^{-1}(\sqrt{x}) \) and \( \cot \theta = \sqrt{x} \): \[ = \sqrt{x}^2 \cot^{-1}(\sqrt{x}) - \frac{1}{2} \sqrt{x} - \frac{1}{2} \cot^{-1}(\sqrt{x}) + C \] Thus, the final result is: \[ \int \cos^{-1} \left( \sqrt{\frac{x}{x+1}} \right) dx = x \cot^{-1}(\sqrt{x}) - \frac{1}{2} \sqrt{x} - \frac{1}{2} \cot^{-1}(\sqrt{x}) + C \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-5

    ICSE|Exercise Section -C|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int cos^(-1)sqrt(x)dx

Evaluate: int cos {2 tan^(-1) sqrt((1-x)/(1+x))}dx

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx

Evaluate : int " cos"^(-1) .(1)/(x) dx

Evaluate: int(1-x)\ sqrt(x)\ dx

Evaluate: int\ sqrt((1+x)/(1-x))\ dx

Evaluate: int1/((x-1)sqrt(x+1))\ dx

Evaluate: int1/((x-1)sqrt(x+2))\ dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int((1+sqrt(x))^2)/(sqrt(x))dx