Home
Class 12
MATHS
(d)/(dx) (AC)= f(x) (MC-AC), then f(x)= ...

`(d)/(dx) (AC)= f(x) (MC-AC)`, then f(x)= (i) `(1)/(x)` (ii) x (iii) `x^(-2)` (iv) `-x^(-1)`

A

`(1)/(x)`

B

x

C

`x^(-2)`

D

`-x^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{d}{dx} (AC) = f(x) (MC - AC)\), we need to find the function \(f(x)\). ### Step-by-Step Solution: 1. **Understanding Average Cost (AC)**: The average cost \(AC\) is defined as the total cost \(C\) divided by the quantity \(x\): \[ AC = \frac{C}{x} \] 2. **Differentiating Average Cost**: We need to differentiate \(AC\) with respect to \(x\): \[ \frac{d}{dx}(AC) = \frac{d}{dx}\left(\frac{C}{x}\right) \] 3. **Applying the Quotient Rule**: To differentiate \(\frac{C}{x}\), we use the quotient rule, which states that if \(u = C\) and \(v = x\), then: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \(u = C\) and \(v = x\), so: \[ \frac{d}{dx}\left(\frac{C}{x}\right) = \frac{x \frac{dC}{dx} - C \cdot 1}{x^2} \] This simplifies to: \[ \frac{d}{dx}(AC) = \frac{x \frac{dC}{dx} - C}{x^2} \] 4. **Identifying Marginal Cost (MC)**: The marginal cost \(MC\) is defined as: \[ MC = \frac{dC}{dx} \] Substituting this into our equation gives: \[ \frac{d}{dx}(AC) = \frac{x \cdot MC - C}{x^2} \] 5. **Rearranging the Expression**: We can factor out \(\frac{1}{x}\): \[ \frac{d}{dx}(AC) = \frac{1}{x} \left(MC - \frac{C}{x}\right) \] Recognizing that \(\frac{C}{x} = AC\), we rewrite it as: \[ \frac{d}{dx}(AC) = \frac{1}{x} (MC - AC) \] 6. **Comparing with Given Equation**: We have: \[ \frac{d}{dx}(AC) = f(x)(MC - AC) \] Setting this equal to our derived expression: \[ f(x)(MC - AC) = \frac{1}{x}(MC - AC) \] 7. **Solving for \(f(x)\)**: To find \(f(x)\), we can equate the coefficients: \[ f(x) = \frac{1}{x} \] ### Conclusion: Thus, the function \(f(x)\) is: \[ f(x) = \frac{1}{x} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER-5

    ICSE|Exercise Section-B|10 Videos
  • MODEL TEST PAPER-16

    ICSE|Exercise SECTION -C (65 MARKS)|10 Videos
  • MODEL TEST PAPER-6

    ICSE|Exercise Section -C|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=mx+c and f(0)=1=f'(0) then f(-2)= (i) 1 (ii) -1 (iii) 3 (iv) +-1

Find the intervals of monotonicity of the following functions. (i) f(x) =-x^(3) +6x^(2)-gx-2 (ii) f(x) =x+(1)/(x+1) (iii) f(x) =x. e^(x-x^(2)) (iv) f(x) =x- cosx

Find the domain and range of the following functions. (i) f(x)=sqrt(2x-3) " (ii) " f(x) =(1)/(x-2) (iii) f(x) =x^(2) +3 " (iv) " f(x)=(1)/(x^(2)+2)

If x=3+2sqrt(2) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)-(1)/(x^(2))

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i) 0 (ii) 1 (iii) 100 (iv) -100

Find the points of discontinuity of the following fiunctions over R. (i) f(x) =(1)/(2 sin x-1)(ii)f(x) =(1)/(x^(2)-3|x|+2) (iii) f(x) =(1)/(x^(4)+x^(2)+1)

If x=2+sqrt(3) , then find : (i)(1)/(x)" "(ii)x+(1)/(x)" "(iii)x-(1)/(x)" "(iv)x^(2)+(1)/(x^(2))

If f(x)="cos"^(2)x+"sec"^(2)x , then (i) f(x)lt1 (ii) f(x)=1 (iii) 2ltf(x)lt1 (iv) f(x)ge2

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)