Home
Class 9
MATHS
If a + b= 9 and ab = -22, find : a-b...

If `a + b= 9 and ab = -22`, find : `a-b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - b \) given the equations \( a + b = 9 \) and \( ab = -22 \). ### Step-by-Step Solution: 1. **Write down the equations:** We have: \[ a + b = 9 \quad \text{(1)} \] \[ ab = -22 \quad \text{(2)} \] 2. **Express \( b \) in terms of \( a \):** From equation (1), we can express \( b \) as: \[ b = 9 - a \quad \text{(3)} \] 3. **Substitute \( b \) into equation (2):** Now substitute equation (3) into equation (2): \[ a(9 - a) = -22 \] Expanding this gives: \[ 9a - a^2 = -22 \] 4. **Rearrange the equation:** Rearranging the equation leads to: \[ a^2 - 9a - 22 = 0 \quad \text{(4)} \] 5. **Factor the quadratic equation (4):** We need to factor the quadratic equation. We look for two numbers that multiply to \(-22\) and add to \(-9\). These numbers are \( -11 \) and \( 2 \): \[ (a - 11)(a + 2) = 0 \] 6. **Solve for \( a \):** Setting each factor to zero gives us: \[ a - 11 = 0 \quad \Rightarrow \quad a = 11 \] \[ a + 2 = 0 \quad \Rightarrow \quad a = -2 \] 7. **Find corresponding values of \( b \):** Now we can find \( b \) for each value of \( a \): - If \( a = 11 \): \[ b = 9 - 11 = -2 \] - If \( a = -2 \): \[ b = 9 - (-2) = 11 \] 8. **Calculate \( a - b \):** Now we can find \( a - b \): - For \( a = 11 \) and \( b = -2 \): \[ a - b = 11 - (-2) = 11 + 2 = 13 \] - For \( a = -2 \) and \( b = 11 \): \[ a - b = -2 - 11 = -13 \] ### Final Answer: Thus, the values of \( a - b \) are \( 13 \) and \( -13 \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + b= 9 and ab = -22 , find : a^(2)- b^(2)

If a - b = 3 and ab = 10 , find : a^3 - b^3 .

If a +b= 7 and ab= 10 , find a-b

If a+ b = 6 and ab = 8 , find : a^(3) + b^(3) .

If a^2 + b^2 = 73 and ab = 24 , find : (i) a+b

If a^2 + b^2 = 73 and ab = 24 , find : (ii) a-b

If a^2 + b^2 = 29 and ab = 10 , find : (i) a+b

If a^2 + b^2 = 29 and ab = 10 , find : (ii) a-b

If a+ b =1 and a-b =7, find : ab

If a-b= 7 and ab= 18 , find a +b