Home
Class 9
MATHS
If a + b= 9 and ab = -22, find : a^(2)- ...

If `a + b= 9 and ab = -22`, find : `a^(2)- b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 - b^2 \) given that \( a + b = 9 \) and \( ab = -22 \). ### Step-by-Step Solution: 1. **Write down the equations:** We have two equations: \[ a + b = 9 \quad \text{(1)} \] \[ ab = -22 \quad \text{(2)} \] 2. **Express \( b \) in terms of \( a \):** From equation (1), we can express \( b \): \[ b = 9 - a \] 3. **Substitute \( b \) in equation (2):** Substitute \( b \) in equation (2): \[ a(9 - a) = -22 \] Expanding this gives: \[ 9a - a^2 = -22 \] 4. **Rearrange the equation:** Rearranging the equation to standard quadratic form: \[ a^2 - 9a - 22 = 0 \] 5. **Factor the quadratic equation:** We need to factor the quadratic equation \( a^2 - 9a - 22 = 0 \). We look for two numbers that multiply to \(-22\) and add to \(-9\). The numbers are \( -11 \) and \( 2 \): \[ (a - 11)(a + 2) = 0 \] 6. **Find the values of \( a \):** Setting each factor to zero gives us: \[ a - 11 = 0 \quad \Rightarrow \quad a = 11 \] \[ a + 2 = 0 \quad \Rightarrow \quad a = -2 \] 7. **Find the corresponding values of \( b \):** Using \( b = 9 - a \): - If \( a = 11 \): \[ b = 9 - 11 = -2 \] - If \( a = -2 \): \[ b = 9 - (-2) = 11 \] 8. **Calculate \( a^2 - b^2 \):** We can use the identity \( a^2 - b^2 = (a + b)(a - b) \): \[ a + b = 9 \] To find \( a - b \): - If \( a = 11 \) and \( b = -2 \): \[ a - b = 11 - (-2) = 11 + 2 = 13 \] - If \( a = -2 \) and \( b = 11 \): \[ a - b = -2 - 11 = -13 \] So, in both cases: \[ a^2 - b^2 = (a + b)(a - b) = 9 \times 13 = 117 \] ### Final Answer: \[ a^2 - b^2 = 117 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + b= 9 and ab = -22 , find : a-b

If a+ b = 7 and ab= 6, find a^(2) - b^(2)

If a-b= 0.9 and ab= 0.36 find: a^(2) -b^(2)

If a^2 + b^2 = 73 and ab = 24 , find : (i) a+b

If a^2 + b^2 = 29 and ab = 10 , find : (i) a+b

If a^(2) +b^(2) = 13 and ab= 6 find: a^(2) - b^(2)

If a+b = 5 and ab = 6 , find a^2 + b^2

If a^2 + b^2 = 29 and ab = 10 , find : (ii) a-b

If a^2 + b^2 = 73 and ab = 24 , find : (ii) a-b

If a-b= 0.9 and ab= 0.36 find: a+b