Home
Class 9
MATHS
If x ne 0 and x=2, find x^(2) + (1)/(x...

If `x ne 0 and x=2`, find `x^(2) + (1)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + \frac{1}{x^2} \) given that \( x = 2 \) and \( x \neq 0 \). ### Step-by-Step Solution: 1. **Substitute the value of \( x \)**: Since we know \( x = 2 \), we can substitute this value into the expression \( x^2 + \frac{1}{x^2} \). \[ x^2 + \frac{1}{x^2} = 2^2 + \frac{1}{2^2} \] 2. **Calculate \( x^2 \)**: Now, calculate \( 2^2 \): \[ 2^2 = 4 \] 3. **Calculate \( \frac{1}{x^2} \)**: Next, calculate \( \frac{1}{2^2} \): \[ \frac{1}{2^2} = \frac{1}{4} \] 4. **Combine the results**: Now, we can combine the results from steps 2 and 3: \[ x^2 + \frac{1}{x^2} = 4 + \frac{1}{4} \] 5. **Find a common denominator**: To add \( 4 \) and \( \frac{1}{4} \), we need a common denominator. The common denominator here is \( 4 \): \[ 4 = \frac{4 \times 4}{4} = \frac{16}{4} \] 6. **Add the fractions**: Now, add \( \frac{16}{4} + \frac{1}{4} \): \[ \frac{16}{4} + \frac{1}{4} = \frac{16 + 1}{4} = \frac{17}{4} \] Thus, the final answer is: \[ x^2 + \frac{1}{x^2} = \frac{17}{4} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x ne 0 and x=2 , find x^(4) + (1)/(x^(4))

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))

If x^(2) + (1)/(x^(2))= 7 and x ne 0 , find the value of : 7x^(3) + 8x- (7)/(x^(3))- (8)/(x)

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

If x ne 0 and x + (1)/(x) = 2 , then show that: x^(2)+ (1)/(x^(2))= x^(3) + (1)/(x^(3)) = x^(4) + (1)/(x^(4))

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

If a ne 0 and a ne 1, show that |{:(x+1,x,x),(x,x+a,x),(x,x,x+a^(2)):}|=a^(3)[1+x((a^(3)-1))/(a^(2)(a-1))].

Find the 9th term in the expansion of ( 3x - (1)/( 2x ) )^(8), x ne 0 .