Home
Class 9
MATHS
If x ne 0 and x=2, find x^(4) + (1)/(x^...

If `x ne 0 and x=2`, find `x^(4) + (1)/(x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 + \frac{1}{x^4} \) given that \( x = 2 \). ### Step-by-Step Solution: 1. **Substitute the value of \( x \)**: \[ x = 2 \] We need to calculate \( x^4 \) first. 2. **Calculate \( x^4 \)**: \[ x^4 = 2^4 = 16 \] 3. **Calculate \( \frac{1}{x^4} \)**: \[ \frac{1}{x^4} = \frac{1}{16} \] 4. **Add \( x^4 \) and \( \frac{1}{x^4} \)**: \[ x^4 + \frac{1}{x^4} = 16 + \frac{1}{16} \] 5. **Find a common denominator to add the fractions**: The common denominator between 16 and \( \frac{1}{16} \) is 16. We can rewrite 16 as \( \frac{16 \times 16}{16} \): \[ 16 = \frac{256}{16} \] 6. **Combine the fractions**: \[ x^4 + \frac{1}{x^4} = \frac{256}{16} + \frac{1}{16} = \frac{256 + 1}{16} = \frac{257}{16} \] ### Final Answer: \[ x^4 + \frac{1}{x^4} = \frac{257}{16} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x ne 0 and x=2 , find x^(2) + (1)/(x^(2))

If x= (1)/(x) - 5 and x ne 5 , find x^(2)- (1)/(x^(2))

If x+1/x=6, find : x^4+1/(x^4)

If 3x- (4)/(x)= 4 and x ne 0 , find 27 x^(3)- (64)/(x^(3))

If x ne 0 and (x^(4))(x^(-4))=y, what is y?

If 2x - (1)/(2x) =4 , find : (i) 4x^(2) + (1)/( 4x^2)

If x ne 0 and x + (1)/(x) = 2 , then show that: x^(2)+ (1)/(x^(2))= x^(3) + (1)/(x^(3)) = x^(4) + (1)/(x^(4))

If x - (1)/(x) = y , x ne 0 , find the value of (x- (1)/ (x) - 2y ) ^(3)

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

Let f (x) = (x ^(3) -4)/((x-1)^(3)) AA x ne 1, g (x)== (x ^(4) -2x ^(2))/(4) AA x in R, h (x) (x ^(3) +4)/((x+1)^(3)) AA x ne -1,