Home
Class 9
MATHS
Given: a^(2) + (1)/(a^(2))= 7 and a ne 0...

Given: `a^(2) + (1)/(a^(2))= 7 and a ne 0`, find
`a + (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a + \frac{1}{a} \) given that \( a^2 + \frac{1}{a^2} = 7 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ a^2 + \frac{1}{a^2} = 7 \] 2. **Recall the identity for \( (a + \frac{1}{a})^2 \):** \[ (a + \frac{1}{a})^2 = a^2 + 2 + \frac{1}{a^2} \] 3. **Rearranging the identity:** From the identity, we can express \( a^2 + \frac{1}{a^2} \) in terms of \( (a + \frac{1}{a})^2 \): \[ (a + \frac{1}{a})^2 = a^2 + \frac{1}{a^2} + 2 \] 4. **Substituting the given value:** Substitute \( a^2 + \frac{1}{a^2} = 7 \) into the equation: \[ (a + \frac{1}{a})^2 = 7 + 2 \] \[ (a + \frac{1}{a})^2 = 9 \] 5. **Taking the square root:** To find \( a + \frac{1}{a} \), take the square root of both sides: \[ a + \frac{1}{a} = \pm \sqrt{9} \] \[ a + \frac{1}{a} = \pm 3 \] ### Final Answer: Thus, the values of \( a + \frac{1}{a} \) are: \[ a + \frac{1}{a} = 3 \quad \text{or} \quad a + \frac{1}{a} = -3 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2)- 5a-1= 0 and a ne 0 , find : a - (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)