Home
Class 9
MATHS
Given: a^(2) + (1)/(a^(2))= 7 and a ne 0...

Given: `a^(2) + (1)/(a^(2))= 7 and a ne 0`, find
`a- (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a - \frac{1}{a} \) given that \( a^2 + \frac{1}{a^2} = 7 \) and \( a \neq 0 \). ### Step-by-step Solution: 1. **Start with the given equation**: \[ a^2 + \frac{1}{a^2} = 7 \] 2. **Use the identity for \( (a - \frac{1}{a})^2 \)**: The identity states: \[ (a - \frac{1}{a})^2 = a^2 - 2 + \frac{1}{a^2} \] Rearranging gives us: \[ (a - \frac{1}{a})^2 = a^2 + \frac{1}{a^2} - 2 \] 3. **Substitute the known value**: Substitute \( a^2 + \frac{1}{a^2} = 7 \) into the equation: \[ (a - \frac{1}{a})^2 = 7 - 2 \] Simplifying this gives: \[ (a - \frac{1}{a})^2 = 5 \] 4. **Take the square root of both sides**: To find \( a - \frac{1}{a} \), take the square root: \[ a - \frac{1}{a} = \pm \sqrt{5} \] 5. **Final answer**: Therefore, the solution is: \[ a - \frac{1}{a} = \sqrt{5} \text{ or } -\sqrt{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a^(2)- (1)/(a^(2))

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

If a^(2)- 5a-1= 0 and a ne 0 , find : a- (1)/(a)

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))