Home
Class 9
MATHS
Given: a^(2) + (1)/(a^(2))= 7 and a ne 0...

Given: `a^(2) + (1)/(a^(2))= 7 and a ne 0`, find
`a^(2)- (1)/(a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's start with the given information and work through the calculations systematically. ### Step 1: Given Information We are given: \[ a^2 + \frac{1}{a^2} = 7 \] ### Step 2: Square the Given Equation We will square both sides of the equation: \[ \left(a^2 + \frac{1}{a^2}\right)^2 = 7^2 \] This expands to: \[ a^4 + 2 \cdot a^2 \cdot \frac{1}{a^2} + \frac{1}{a^4} = 49 \] Since \( a^2 \cdot \frac{1}{a^2} = 1 \), we can simplify this to: \[ a^4 + 2 + \frac{1}{a^4} = 49 \] ### Step 3: Rearranging the Equation Now, we can rearrange the equation to isolate \( a^4 + \frac{1}{a^4} \): \[ a^4 + \frac{1}{a^4} = 49 - 2 \] \[ a^4 + \frac{1}{a^4} = 47 \] ### Step 4: Finding \( a^2 - \frac{1}{a^2} \) Next, we need to find \( a^2 - \frac{1}{a^2} \). We will use the identity: \[ \left(a^2 - \frac{1}{a^2}\right)^2 = a^4 - 2 \cdot a^2 \cdot \frac{1}{a^2} + \frac{1}{a^4} \] This simplifies to: \[ \left(a^2 - \frac{1}{a^2}\right)^2 = a^4 - 2 + \frac{1}{a^4} \] ### Step 5: Substitute the Known Values Now, substitute \( a^4 + \frac{1}{a^4} = 47 \) into the equation: \[ \left(a^2 - \frac{1}{a^2}\right)^2 = 47 - 2 \] \[ \left(a^2 - \frac{1}{a^2}\right)^2 = 45 \] ### Step 6: Taking the Square Root To find \( a^2 - \frac{1}{a^2} \), we take the square root of both sides: \[ a^2 - \frac{1}{a^2} = \pm \sqrt{45} \] \[ a^2 - \frac{1}{a^2} = \pm 3\sqrt{5} \] ### Final Answer Thus, the final result is: \[ a^2 - \frac{1}{a^2} = 3\sqrt{5} \text{ or } -3\sqrt{5} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a^(3) + (1)/(a^(3))

If a- (1)/(a)= 8 and a ne 0 , find: a^(2)- (1)/(a^(2))

If a + (1)/(a)= 6 and a ne 0 , find a^(2) - (1)/(a^(2))

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a^(3)- (1)/(a^(3))

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))