Home
Class 9
MATHS
If a^(2)- 5a + 1 = 0 and a ne 0, find : ...

If `a^(2)- 5a + 1 = 0 and a ne 0`, find : `a + (1)/(a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 - 5a + 1 = 0 \) and find the value of \( a + \frac{1}{a} \), we can follow these steps: ### Step 1: Solve the quadratic equation We start with the equation: \[ a^2 - 5a + 1 = 0 \] We can use the quadratic formula to find the values of \( a \): \[ a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -5, c = 1 \). ### Step 2: Calculate the discriminant First, we calculate the discriminant \( D \): \[ D = b^2 - 4ac = (-5)^2 - 4 \cdot 1 \cdot 1 = 25 - 4 = 21 \] ### Step 3: Find the roots Now we can substitute the values into the quadratic formula: \[ a = \frac{5 \pm \sqrt{21}}{2} \] ### Step 4: Find \( a + \frac{1}{a} \) Next, we need to find \( a + \frac{1}{a} \). We can express \( \frac{1}{a} \) as follows: \[ \frac{1}{a} = \frac{2}{5 \pm \sqrt{21}} \] To simplify \( a + \frac{1}{a} \), we will use the identity: \[ a + \frac{1}{a} = \frac{a^2 + 1}{a} \] We already have \( a^2 \) from the original equation: \[ a^2 = 5a - 1 \] So, \[ a + \frac{1}{a} = \frac{(5a - 1) + 1}{a} = \frac{5a}{a} = 5 \] ### Final Answer Thus, the value of \( a + \frac{1}{a} \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2)- 5a + 1 = 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 3a + 1= 0 and a ne 0 , find : a+ (1)/(a)

If a^(2)- 3a + 1= 0 and a ne 0 , find : a^(2) + (1)/(a^(2))

If a^(2)- 5a-1= 0 and a ne 0 , find : a^(2)- (1)/(a^(2))

If a- (1)/(a)= 8 and a ne 0 , find: a+ (1)/(a)

If a + (1)/(a)= 6 and a ne 0 , find a- (1)/(a)

If a^(2) + (1)/(a^(2)) = 18 and a ne 0 , find: a- (1)/(a)

If a^(2) + (1)/(a^(2))= 47 and a ne 0 , find: a+ (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a + (1)/(a)

Given: a^(2) + (1)/(a^(2))= 7 and a ne 0 , find a- (1)/(a)