Home
Class 9
MATHS
Evaluate: (2a + 3b)^(3)...

Evaluate: `(2a + 3b)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \((2a + 3b)^{3}\), we will use the formula for the cube of a binomial, which states that: \[ (a + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \] ### Step-by-Step Solution: 1. **Identify \(a\) and \(b\)**: - Here, let \(a = 2a\) and \(b = 3b\). 2. **Calculate \(a^{3}\)**: - \(a^{3} = (2a)^{3} = 2^{3} \cdot a^{3} = 8a^{3}\). 3. **Calculate \(b^{3}\)**: - \(b^{3} = (3b)^{3} = 3^{3} \cdot b^{3} = 27b^{3}\). 4. **Calculate \(3a^{2}b\)**: - \(3a^{2}b = 3 \cdot (2a)^{2} \cdot (3b) = 3 \cdot 4a^{2} \cdot 3b = 36a^{2}b\). 5. **Calculate \(3ab^{2}\)**: - \(3ab^{2} = 3 \cdot (2a) \cdot (3b)^{2} = 3 \cdot 2a \cdot 9b^{2} = 54ab^{2}\). 6. **Combine all parts**: - Now, we combine all these results: \[ (2a + 3b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \] \[ = 8a^{3} + 27b^{3} + 36a^{2}b + 54ab^{2} \] ### Final Answer: \[ (2a + 3b)^{3} = 8a^{3} + 27b^{3} + 36a^{2}b + 54ab^{2} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate: (4a + 3b)^(2)- (4a-3b)^(2) + 48ab

Evaluate: (2a-3b)^(2)

Evaluate : (ix) (2a - 3b) (3a + 4b)

Evaluate : 2a^(3)-b^(3) when a=-1,b=2

Evaluate : (iii) (4a - 3b) (2a + 5b)

Evaluate : a. ((3)/(5))^(3) b. ((-2)/(7))^(2)

Evaluate : 3a^(3)b^(2) when a =2 ,b=3

Evaluate : 5a^(3)b^(2) when a =3 and b = -2

Evaluate : (viii) (3a^(2) - 4b^(2) ) (8a^(2) - 3b^(2) )

Evaluate : (i) ((a)/(2b)+(2b)/(a))^(2)-((a)/(2b)-(2b)/(a))^(2)-4 (ii) (4a+3b)^(2)-(4a-3b)^(2)+48ab