Home
Class 9
MATHS
Evaluate: (4a-5b)^(3)...

Evaluate: `(4a-5b)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \((4a - 5b)^3\), we can use the formula for the cube of a binomial, which is given by: \[ (x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3 \] In our case, we will let \(x = 4a\) and \(y = 5b\). Thus, we can rewrite the expression as: \[ (4a - 5b)^3 = (4a)^3 - 3(4a)^2(5b) + 3(4a)(5b)^2 - (5b)^3 \] Now, we will calculate each term step by step. ### Step 1: Calculate \((4a)^3\) \[ (4a)^3 = 4^3 \cdot a^3 = 64a^3 \] ### Step 2: Calculate \(3(4a)^2(5b)\) \[ 3(4a)^2(5b) = 3 \cdot 16a^2 \cdot 5b = 240a^2b \] ### Step 3: Calculate \(3(4a)(5b)^2\) \[ 3(4a)(5b)^2 = 3 \cdot 4a \cdot 25b^2 = 300ab^2 \] ### Step 4: Calculate \((5b)^3\) \[ (5b)^3 = 5^3 \cdot b^3 = 125b^3 \] ### Step 5: Combine all the terms Now we can combine all the calculated terms: \[ (4a - 5b)^3 = 64a^3 - 240a^2b + 300ab^2 - 125b^3 \] Thus, the final result is: \[ (4a - 5b)^3 = 64a^3 - 240a^2b + 300ab^2 - 125b^3 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate : (iii) (4a - 3b) (2a + 5b)

Evaluate : (ii) (2a - 5b) ( 2a + 5b) ( 4a^2 + 25b^2)

Evaluate: b. 4 (5)/(7) xx 3

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Evaluate : a. 6^(3)-:6^(3) b. 5^(4)-:5^(4) c. (-3)^(5)-:(-3)^(5) d. ((3)/(5))^(4)-:((3)/(5))^(4)

Evaluate: b. (3)/(4) of (4 (1)/(5) xx (10)/(7))

Evaluate : (i) (cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A) , when A = 15^(@) (ii) (3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@))) , when B = 20^(@)

If a/b=4/3, then the value of (6a+4b)/(6a-5b) is (a) -1 (b) 3 (c) 4 (d) 5

If a : b=2:5, . find the value of (3a+2b)/(4a+b)