Home
Class 9
MATHS
If a+ b + c = 0, show that : a^(3) + b^...

If ` a+ b + c = 0`, show that : `a^(3) + b^(3) + c^(3)= 3abc`

Text Solution

Verified by Experts

The correct Answer is:
3abc
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + 2b + c= 0 , then show that: a^(3) + 8b^(3) + c^(3)= 6abc

If 3a + 5b + 4c= 0 , show that: 27a^(3) + 125b^(3) + 64 c^(3) = 180 abc

Suppose the that quadratic equations ax^(2)+bx+c=0 and bx^(2)+cx+a=0 have a common root. Then show that a^(3)+b^(3)+c^(3)=3abc .

if a : b = e : d , show that : 3a + 2b : 3a - 2b = 3c + 2d : 3c - 2d .

If a+b+c=5 and ab+bc+ca=10, then prove that a^(3)+b^(3)+c^(3)-3abc=-25 .

Suppose a, b, c, in R and abc = 1, if A = [[3a, b, c ],[b, 3c, a ],[c, a, 3b]] is such that A ^(T) A = 4 ^(1//3) I and abs(A) gt 0, the value of a^(3) + b^(3) + c^(3) is

If a, b, c are in A.P, show that (i)a^3+b^3+6abc=8b^3 (ii) (a+2b-c)(2b+c-a)(a+c-b) =4abc

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

If a+b+c=5 and ab+bc+ca=10 , then prove that a^3+b^3+c^3-3abc=-25 .