Home
Class 9
MATHS
Use property to evalute: 8^(3) + (-5)^(3...

Use property to evalute: `8^(3) + (-5)^(3) + (-3)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(8^3 + (-5)^3 + (-3)^3\) using the property of cubes, we can follow these steps: ### Step 1: Identify the values of \(x\), \(y\), and \(z\) Let: - \(x = 8\) - \(y = -5\) - \(z = -3\) ### Step 2: Check if \(x + y + z = 0\) Calculate: \[ x + y + z = 8 + (-5) + (-3) = 8 - 5 - 3 = 0 \] Since the sum is equal to 0, we can use the property of cubes. ### Step 3: Apply the property of cubes The property states that if \(x + y + z = 0\), then: \[ x^3 + y^3 + z^3 = 3xyz \] Substituting the values of \(x\), \(y\), and \(z\): \[ 8^3 + (-5)^3 + (-3)^3 = 3 \cdot 8 \cdot (-5) \cdot (-3) \] ### Step 4: Calculate \(xyz\) Now calculate \(xyz\): \[ xyz = 8 \cdot (-5) \cdot (-3) \] Calculating step by step: 1. \(8 \cdot (-5) = -40\) 2. \(-40 \cdot (-3) = 120\) ### Step 5: Multiply by 3 Now multiply by 3: \[ 3xyz = 3 \cdot 120 = 360 \] ### Final Answer Thus, the value of \(8^3 + (-5)^3 + (-3)^3\) is: \[ \boxed{360} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Use property to evaluate: 13^(3) + (-8)^(3) + (-5)^(3)

Use property to evaluate: 9^(3) -5^(3) - 4^(3)

Use property to evaluate: 38^(3) + (-26)^(3) + (-12)^(3)

Use property to evalute: 2^(3) + 4^(3) + (-6)^(3)

Use property to evaluate: 7^(3) + 3^(3) + (-10)^(3)

Use property to evaluate : (i) 13^(3)+(-8)^(3)+(-5)^(3) (ii) 9^(3)-5^(3)-4^(3)

If (x^(2)+y^(2))/(x^(2)-y^(2))=17/(8) , using the properties of proportion find the value of : (ii) (x^(3)+y^(3))/(x^(3)-y^(3))

Find the modulus of the following using the property of modulus (3+2i)/(2-5i) + (3-2i)/(2+5i)

Substract : (i) (5)/(8) "from" (-3)/(8)

Name the multiplication property of rational numbers shown below : (i) (3)/(5)xx(-8)/(9)=(-8)/(9)xx(3)/(5)