Home
Class 9
MATHS
Expand: (3x- 2y + 4)(3x- 2y - 4)...

Expand: `(3x- 2y + 4)(3x- 2y - 4)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3x - 2y + 4)(3x - 2y - 4)\), we can use the difference of squares formula. The expression can be rewritten in the form of \((a + b)(a - b)\), where: - \(a = 3x - 2y\) - \(b = 4\) ### Step 1: Identify \(a\) and \(b\) We identify \(a\) and \(b\): - \(a = 3x - 2y\) - \(b = 4\) ### Step 2: Apply the difference of squares formula Using the difference of squares formula, which states that \((a + b)(a - b) = a^2 - b^2\), we can expand the expression: \[ (3x - 2y + 4)(3x - 2y - 4) = (3x - 2y)^2 - 4^2 \] ### Step 3: Calculate \(a^2\) and \(b^2\) Now we calculate \(a^2\) and \(b^2\): - \(a^2 = (3x - 2y)^2\) - \(b^2 = 4^2 = 16\) ### Step 4: Expand \(a^2\) To expand \(a^2 = (3x - 2y)^2\), we use the formula \((a - b)^2 = a^2 - 2ab + b^2\): \[ (3x - 2y)^2 = (3x)^2 - 2(3x)(2y) + (2y)^2 \] Calculating each term: - \((3x)^2 = 9x^2\) - \(-2(3x)(2y) = -12xy\) - \((2y)^2 = 4y^2\) Thus, \[ (3x - 2y)^2 = 9x^2 - 12xy + 4y^2 \] ### Step 5: Combine the results Now we can substitute back into our expression: \[ (3x - 2y + 4)(3x - 2y - 4) = (9x^2 - 12xy + 4y^2) - 16 \] ### Step 6: Final expression Combining the terms gives us: \[ 9x^2 - 12xy + 4y^2 - 16 \] ### Final Answer The expanded form of \((3x - 2y + 4)(3x - 2y - 4)\) is: \[ 9x^2 - 12xy + 4y^2 - 16 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand : (3x - 2y)^3

Expand: (3x-2y + 5z)^(2)

Expand : (2x- y + 2)^(3)

Expand: (3x- 5y - 2z) (3x- 5y + 2z)

Expand: (3x+ 5y+ 2z) (3x- 5y + 2z)

{:(3x - y = 2),(6x + 2y = 4):}

Expand: (2x + 3y - 4z)^(2)

{:(3x + 2y = 4),(2x - 3y = 7):}

Expand: (5x-3y-2)^(2)

Expand : (i) (3x - 4y +5z)^2