Home
Class 9
MATHS
Expand: (2x + 3y - 4z)^(2)...

Expand: `(2x + 3y - 4z)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2x + 3y - 4z)^{2}\), we will use the formula for the square of a trinomial, which states: \[ (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca \] ### Step-by-Step Solution: 1. **Identify \(a\), \(b\), and \(c\)**: - Let \(a = 2x\) - Let \(b = 3y\) - Let \(c = -4z\) 2. **Calculate \(a^{2}\)**: \[ a^{2} = (2x)^{2} = 4x^{2} \] 3. **Calculate \(b^{2}\)**: \[ b^{2} = (3y)^{2} = 9y^{2} \] 4. **Calculate \(c^{2}\)**: \[ c^{2} = (-4z)^{2} = 16z^{2} \] 5. **Calculate \(2ab\)**: \[ 2ab = 2 \cdot (2x) \cdot (3y) = 12xy \] 6. **Calculate \(2bc\)**: \[ 2bc = 2 \cdot (3y) \cdot (-4z) = -24yz \] 7. **Calculate \(2ca\)**: \[ 2ca = 2 \cdot (2x) \cdot (-4z) = -16xz \] 8. **Combine all the results**: \[ (2x + 3y - 4z)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca \] \[ = 4x^{2} + 9y^{2} + 16z^{2} + 12xy - 24yz - 16xz \] ### Final Expanded Form: \[ (2x + 3y - 4z)^{2} = 4x^{2} + 9y^{2} + 16z^{2} + 12xy - 24yz - 16xz \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand : (i) (3x - 4y +5z)^2

The coefficient of x^2y^4z^2 in the expansion of (2x - 3y + 4z)^9 is

Expand: (3x- 5y - 2z) (3x- 5y + 2z)

Expand: (3x-2y + 5z)^(2)

Expand: (3x- 2y + 4)(3x- 2y - 4)

Expand: (5x-3y-2)^(2)

Expand: (x+y- z)^(2)

Expand (x-3y+(z)/(2))^(2) .

Subtract 3x^(3) - 5x^(2) - 9x + 6 " from " 2x^(3) + 3y^(2) - 4z^(2) and x^(2) - 2y^(2) +z^(2)

Expand (3x-2y)^(4)