Home
Class 9
MATHS
Expand: (3x-2y + 5z)^(2)...

Expand: `(3x-2y + 5z)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((3x - 2y + 5z)^2\), we can use the formula for the square of a trinomial, which is given by: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \] In our case, we can identify: - \(a = 3x\) - \(b = -2y\) - \(c = 5z\) Now, we will apply the formula step by step. ### Step 1: Calculate \(a^2\) \[ a^2 = (3x)^2 = 9x^2 \] ### Step 2: Calculate \(b^2\) \[ b^2 = (-2y)^2 = 4y^2 \] ### Step 3: Calculate \(c^2\) \[ c^2 = (5z)^2 = 25z^2 \] ### Step 4: Calculate \(2ab\) \[ 2ab = 2 \cdot (3x) \cdot (-2y) = -12xy \] ### Step 5: Calculate \(2bc\) \[ 2bc = 2 \cdot (-2y) \cdot (5z) = -20yz \] ### Step 6: Calculate \(2ca\) \[ 2ca = 2 \cdot (5z) \cdot (3x) = 30xz \] ### Step 7: Combine all the results Now we can combine all the parts we calculated: \[ (3x - 2y + 5z)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca \] \[ = 9x^2 + 4y^2 + 25z^2 - 12xy - 20yz + 30xz \] Thus, the expanded form of \((3x - 2y + 5z)^2\) is: \[ 9x^2 + 4y^2 + 25z^2 - 12xy - 20yz + 30xz \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand: (2x + 3y - 4z)^(2)

Expand (3x-2y)^(4)

Expand : (i) (3x - 4y +5z)^2

Expand : (3x - 2y)^3

Expand (3x-2y)^(4) .

Expand: (3x- 5y - 2z) (3x- 5y + 2z)

Expand : (i) (5-3y-2)^(2) (ii) (x-(1)/(x)+5)^(2)

Expand (3x^2- x/2)^5

Expand (x-3y+(z)/(2))^(2) .

Expand: (x+y- z)^(2)