Home
Class 9
MATHS
Expand: (4a- 5b- 2c)^(2)...

Expand: `(4a- 5b- 2c)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((4a - 5b - 2c)^2\), we can use the formula for the square of a trinomial, which is given by: \[ (A + B + C)^2 = A^2 + B^2 + C^2 + 2AB + 2BC + 2CA \] In our case, we can rewrite the expression as: \[ (4a - 5b - 2c)^2 = (4a + (-5b) + (-2c))^2 \] Here, we identify: - \(A = 4a\) - \(B = -5b\) - \(C = -2c\) Now, we can apply the formula step by step. ### Step 1: Calculate \(A^2\), \(B^2\), and \(C^2\) 1. \(A^2 = (4a)^2 = 16a^2\) 2. \(B^2 = (-5b)^2 = 25b^2\) 3. \(C^2 = (-2c)^2 = 4c^2\) ### Step 2: Calculate \(2AB\), \(2BC\), and \(2CA\) 1. \(2AB = 2 \cdot (4a) \cdot (-5b) = -40ab\) 2. \(2BC = 2 \cdot (-5b) \cdot (-2c) = 20bc\) 3. \(2CA = 2 \cdot (-2c) \cdot (4a) = -16ac\) ### Step 3: Combine all the results Now, we combine all these results together: \[ (4a - 5b - 2c)^2 = A^2 + B^2 + C^2 + 2AB + 2BC + 2CA \] Substituting the values we calculated: \[ = 16a^2 + 25b^2 + 4c^2 - 40ab + 20bc - 16ac \] ### Final Result Thus, the expanded form of \((4a - 5b - 2c)^2\) is: \[ 16a^2 + 25b^2 + 4c^2 - 40ab + 20bc - 16ac \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Expand : (v) (a+ b - c)^2

Expand : (vi) (a-b + c)^2

Expand : (a-2b)^3

Expand : (i) (4a-5b)^(3) " " (ii) (a+2b)^(3)

Expand : (i) (a+b-c)^(2) " " (ii) (a-2b-5c)^(2) " " (iii) (3a-2b-5c)^(2) " " (iv) (2x+(1)/(x)+1)^(2) .

Expand : (i) (3a-5b)^(2) " " (ii) (a+(1)/(a))^(2) " " (iii) (2x-(1)/(2x))^(2) .

Expand : (ii) (a- 2b)^2

Expand (4a-2b-3c)^2

Expand : (ii) (2a - 5b - 4c)^2

Expand : (i) (2a + b)^2