Home
Class 9
MATHS
If a^(2) + b^(2) + c^(2) = 29 and a + b ...

If `a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9`, find: `ab + bc + ca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Given Equations**: We have two equations: - \( a^2 + b^2 + c^2 = 29 \) (Equation 1) - \( a + b + c = 9 \) (Equation 2) 2. **Square Equation 2**: We will square the second equation: \[ (a + b + c)^2 = 9^2 \] This gives us: \[ a^2 + b^2 + c^2 + 2(ab + bc + ca) = 81 \] 3. **Substitute Equation 1 into the Squared Equation**: We know from Equation 1 that \( a^2 + b^2 + c^2 = 29 \). We substitute this into the squared equation: \[ 29 + 2(ab + bc + ca) = 81 \] 4. **Isolate \( ab + bc + ca \)**: Now, we will isolate \( ab + bc + ca \): \[ 2(ab + bc + ca) = 81 - 29 \] \[ 2(ab + bc + ca) = 52 \] 5. **Divide by 2**: Finally, we divide both sides by 2 to find \( ab + bc + ca \): \[ ab + bc + ca = \frac{52}{2} = 26 \] Thus, the value of \( ab + bc + ca \) is \( 26 \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If a+b+ c=9 and ab + bc +ca = 15 , find : a^2 + b^2 + c^2 .

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .