Home
Class 9
MATHS
If a + b- c = 4 and a^(2) + b^(2) + c^(2...

If `a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38`, find `ab- bc - ca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two equations given: 1. \( a + b - c = 4 \) 2. \( a^2 + b^2 + c^2 = 38 \) We need to find the value of \( ab - bc - ca \). ### Step 1: Square the first equation We start by squaring the first equation: \[ (a + b - c)^2 = 4^2 \] This simplifies to: \[ a^2 + b^2 + c^2 + 2ab - 2bc - 2ca = 16 \] ### Step 2: Substitute the second equation Now, we can substitute the value of \( a^2 + b^2 + c^2 \) from the second equation into our squared equation: \[ 38 + 2ab - 2bc - 2ca = 16 \] ### Step 3: Rearrange the equation Next, we rearrange the equation to isolate the terms involving \( ab \), \( bc \), and \( ca \): \[ 2ab - 2bc - 2ca = 16 - 38 \] This simplifies to: \[ 2ab - 2bc - 2ca = -22 \] ### Step 4: Divide by 2 To find \( ab - bc - ca \), we divide the entire equation by 2: \[ ab - bc - ca = \frac{-22}{2} \] This gives us: \[ ab - bc - ca = -11 \] ### Final Answer Thus, the value of \( ab - bc - ca \) is: \[ \boxed{-11} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

If a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77 , find: ab- bc+ ca

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

If 1, omega, omega^(2) are three cube roots of unity, show that (a + omega b+ omega^(2)c) (a + omega^(2)b+ omega c)= a^(2) + b^(2) + c^(2)- ab- bc - ca

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c