Home
Class 9
MATHS
If a-b-c= 3 and a^(2) + b^(2) + c^(2) =...

If `a-b-c= 3 and a^(2) + b^(2) + c^(2) = 77`, find: `ab- bc+ ca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations: 1. \( a - b - c = 3 \) (Equation 1) 2. \( a^2 + b^2 + c^2 = 77 \) (Equation 2) We need to find the value of \( ab - bc + ca \). ### Step 1: Rewrite Equation 1 From Equation 1, we can express \( a \) in terms of \( b \) and \( c \): \[ a = b + c + 3 \] ### Step 2: Substitute \( a \) in Equation 2 Now, substitute \( a \) in Equation 2: \[ (b + c + 3)^2 + b^2 + c^2 = 77 \] ### Step 3: Expand the left-hand side Expanding \( (b + c + 3)^2 \): \[ (b + c + 3)^2 = b^2 + c^2 + 6b + 6c + 9 \] So, we have: \[ b^2 + c^2 + 6b + 6c + 9 + b^2 + c^2 = 77 \] This simplifies to: \[ 2b^2 + 2c^2 + 6b + 6c + 9 = 77 \] ### Step 4: Simplify the equation Subtract 9 from both sides: \[ 2b^2 + 2c^2 + 6b + 6c = 68 \] Now, divide the entire equation by 2: \[ b^2 + c^2 + 3b + 3c = 34 \] ### Step 5: Rearranging Rearranging gives us: \[ b^2 + c^2 + 3b + 3c - 34 = 0 \] ### Step 6: Finding \( ab - bc + ca \) We can express \( ab - bc + ca \) using \( a = b + c + 3 \): \[ ab - bc + ca = b(b + c + 3) - bc + c(b + c + 3) \] Expanding this: \[ = b^2 + bc + 3b - bc + cb + c^2 + 3c \] This simplifies to: \[ = b^2 + c^2 + 3b + 3c \] ### Step 7: Substitute back From our earlier equation, we know: \[ b^2 + c^2 + 3b + 3c = 34 \] Thus, \[ ab - bc + ca = 34 \] ### Final Answer The value of \( ab - bc + ca \) is \( \boxed{34} \). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a + b- c = 4 and a^(2) + b^(2) + c^(2)= 38 , find ab- bc - ca

If a+b+c = 10 and a^(2) + b^(2) + c^(2) = 38 , find : ab + bc + ca

If a+b+c =11 and a^(2) + b^(2) + c^(2) =81 , find : ab + bc + ca .

If a+b+ c =9 and a^(2) + b^(2) + c^(2) = 29 , find ab + bc + ca .

If a + b + c= 12 and a^(2) + b^(2) + c^(2) = 50 , find ab + bc + ca

Find : a + b+ c , if a^(2) + b^(2) + c^(2) = 83 and ab + bc + ca = 71 .

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

Find : a^(2) + b^(2) + c^(2) , if a+ b+ c = 9 and ab+ bc + ca = 24

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c