Home
Class 9
MATHS
If each of a, b and c is a non-zero numb...

If each of a, b and c is a non-zero number and `(a)/(b)= (b)/(c )`, show that: `(a + b+c) (a-b + c) = a^(2) + b^(2) + c^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that: \[ (a + b + c)(a - b + c) = a^2 + b^2 + c^2 \] given that \(\frac{a}{b} = \frac{b}{c}\). ### Step 1: Cross-Multiply the Given Ratio From the ratio \(\frac{a}{b} = \frac{b}{c}\), we can cross-multiply: \[ a \cdot c = b^2 \] Let’s label this as Equation (1). ### Step 2: Expand the Left-Hand Side (LHS) Now we will expand the left-hand side of the equation we want to prove: \[ (a + b + c)(a - b + c) \] Using the distributive property (also known as the FOIL method for binomials): \[ = a(a - b + c) + b(a - b + c) + c(a - b + c) \] Calculating each term: - \(a(a - b + c) = a^2 - ab + ac\) - \(b(a - b + c) = ab - b^2 + bc\) - \(c(a - b + c) = ac - bc + c^2\) Combining these results: \[ = a^2 - ab + ac + ab - b^2 + bc + ac - bc + c^2 \] Notice that \(-ab\) and \(+ab\) cancel out, and \(+bc\) and \(-bc\) also cancel out: \[ = a^2 - b^2 + 2ac + c^2 \] ### Step 3: Substitute Using Equation (1) From Equation (1), we have \(ac = b^2\). Substitute \(ac\) in the expression: \[ = a^2 - b^2 + 2b^2 + c^2 \] This simplifies to: \[ = a^2 + b^2 + c^2 \] ### Conclusion Thus, we have shown that: \[ (a + b + c)(a - b + c) = a^2 + b^2 + c^2 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If (a)/(b) = (c)/(d) , show that : (a + b) : (c + d) = sqrt(a^(2) + b^(2)) : sqrt(c^(2) + d^(2))

Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2),ab,ac),(ab,c^(2) + a^(2),bc),(ac,bc,a^(2) + b^(2))| = k a^(2) b^(2) c^(2) , then k is equal to

Show that: |b^2+c^2a b a c b a c^2+a^2b c c a c b a^2+b^2|=4a^2b^2c^2

(i) a , b, c are in H.P. , show that (b + a)/(b -a) + (b + c)/(b - c) = 2 (ii) If a^(2), b^(2), c^(2) are A.P. then b + c , c + a , a + b are in H.P. .

Show that: |b^2+c^2a b a c b a c^2+a^2b cc a c b a^2+b^2|=4a^2\ b^2\ c^2 .

If a, b, c, d are four non - zero real numbers such that (d+a-b)^(2)+(d+b-c)^(2)=0 and roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are real equal, then

Show that: |(b+c)^2b a c a a b(c+a)^2c b a c b c(a+b)^2|=2a b c(a+b+c)^3

If a, b, c are in A.P, then show that: \ b c-a^2,\ c a-b^2,\ a b-c^2 are in A.P.