Home
Class 9
MATHS
If a= 2, b= 3 and c= 4, find the value o...

If a= 2, b= 3 and c= 4, find the value of : `(ab + bc + ca- a^(2) -b^(2)-c^(2))/(3abc-a^(3)-b^(3)-c^(3))`, using suitable identity

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((ab + bc + ca - a^2 - b^2 - c^2) / (3abc - a^3 - b^3 - c^3)\) given \(a = 2\), \(b = 3\), and \(c = 4\), we can use suitable identities. ### Step-by-Step Solution: 1. **Substituting Values**: Substitute \(a\), \(b\), and \(c\) into the expression. \[ \text{Numerator: } ab + bc + ca - a^2 - b^2 - c^2 = (2 \cdot 3) + (3 \cdot 4) + (4 \cdot 2) - (2^2) - (3^2) - (4^2) \] \[ = 6 + 12 + 8 - 4 - 9 - 16 \] \[ = 26 - 29 = -3 \] \[ \text{Denominator: } 3abc - a^3 - b^3 - c^3 = 3(2 \cdot 3 \cdot 4) - (2^3) - (3^3) - (4^3) \] \[ = 3(24) - 8 - 27 - 64 \] \[ = 72 - 99 = -27 \] 2. **Forming the Expression**: Now we can write the expression with the calculated values: \[ \frac{-3}{-27} \] 3. **Simplifying**: Simplifying the fraction: \[ = \frac{3}{27} = \frac{1}{9} \] ### Final Answer: Thus, the value of the expression is \(\frac{1}{9}\). ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If a = 3, b = 2 and c = -4, find the values of: 2a+3b-5c

If a = 3, b = 2 and c = -4, find the values of: 3ab-3b^(2)+4abc

If a = 3, b = 2 and c = -4, find the values of: c^(2)-a^(2)

If a = 2, b = 3 and c = -2, find the value of a^(2)+b^(2)+c^(2)-2b-2bc-2ca+3abc

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)

When a=3 , b=0 , c=-2 , then find the value of : ab+2bc+3ca+4abc.

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

If a:b=3:5 and b:c=6:7 ,find a:b:c

If a+b+c=9 and a^2+b^2+c^2=35 , find the value of a^3+b^3+c^3-3a b c