Home
Class 9
MATHS
Find the square of: (3a)/(2b) - (2b)...

Find the square of:
`(3a)/(2b) - (2b)/(3a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square of the expression \(\frac{3a}{2b} - \frac{2b}{3a}\), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ \left(\frac{3a}{2b} - \frac{2b}{3a}\right)^2 \] ### Step 2: Use the square of a binomial formula We will use the formula for the square of a binomial: \[ (x - y)^2 = x^2 + y^2 - 2xy \] In our case, let: \[ x = \frac{3a}{2b} \quad \text{and} \quad y = \frac{2b}{3a} \] So, we can rewrite the expression as: \[ \left(\frac{3a}{2b}\right)^2 + \left(\frac{2b}{3a}\right)^2 - 2\left(\frac{3a}{2b}\right)\left(\frac{2b}{3a}\right) \] ### Step 3: Calculate \(x^2\) Now, we calculate \(x^2\): \[ \left(\frac{3a}{2b}\right)^2 = \frac{(3a)^2}{(2b)^2} = \frac{9a^2}{4b^2} \] ### Step 4: Calculate \(y^2\) Next, we calculate \(y^2\): \[ \left(\frac{2b}{3a}\right)^2 = \frac{(2b)^2}{(3a)^2} = \frac{4b^2}{9a^2} \] ### Step 5: Calculate \(2xy\) Now, we calculate \(2xy\): \[ 2\left(\frac{3a}{2b}\right)\left(\frac{2b}{3a}\right) = 2 \cdot \frac{3a \cdot 2b}{2b \cdot 3a} = 2 \cdot 1 = 2 \] ### Step 6: Combine all parts Now, we can combine all the parts together: \[ \frac{9a^2}{4b^2} + \frac{4b^2}{9a^2} - 2 \] ### Final Result Thus, the square of the expression \(\frac{3a}{2b} - \frac{2b}{3a}\) is: \[ \frac{9a^2}{4b^2} + \frac{4b^2}{9a^2} - 2 \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the square of: 3a-4b

Find the square of: 2a +b

Find the square of: 3a + 7b

Find the square of : (vi) 3a - 2b - 5c

Find the cube of: 3a-2b

(i) If x = (6ab)/(a + b) , find the value of : (x + 3a)/(x - 3a) + (x + 3b)/(x - 3b) . (ii) a = (4sqrt(6))/(sqrt(2) + sqrt(3)) , find the value of : (a + 2sqrt(2))/(a - 2sqrt(2)) + (a + 2sqrt(3))/(a - 2sqrt(3)) .

Find the value of 2a^(3)-b^(4)+3a^(2)b^(3) when a =3 , b=-1 .

Evaluate : (ix) (2a - 3b) (3a + 4b)

If a : b=2:5, . find the value of (3a+2b)/(4a+b)

Evaluate : and write the answer in factors form : (3a- 2b)^(3) + (2b- 5c)^(3) + (5c- 3a) ^(3)