Home
Class 9
MATHS
Use identities to evaluate: (101)^(2)...

Use identities to evaluate: `(101)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( (101)^2 \) using the identity, we can follow these steps: ### Step 1: Rewrite the expression We can express \( 101 \) as \( 100 + 1 \). So, we have: \[ (101)^2 = (100 + 1)^2 \] ### Step 2: Apply the identity We will use the identity for the square of a binomial, which states: \[ (a + b)^2 = a^2 + b^2 + 2ab \] In our case, \( a = 100 \) and \( b = 1 \). Applying the identity: \[ (100 + 1)^2 = 100^2 + 1^2 + 2 \cdot 100 \cdot 1 \] ### Step 3: Calculate each term Now we calculate each term: 1. \( 100^2 = 10000 \) 2. \( 1^2 = 1 \) 3. \( 2 \cdot 100 \cdot 1 = 200 \) ### Step 4: Combine the results Now, we can combine all the calculated terms: \[ 10000 + 1 + 200 = 10201 \] ### Final Result Thus, the value of \( (101)^2 \) is: \[ \boxed{10201} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Use identities to evaluate: (502)^(2)

Use identities to evaluate: (998)^(2)

Use identities to evaluate: (97)^(2)

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)

Using suitable identity, evaluate: (104)^(3)

Using suitable identity, evaluate: (97)^(3)

Use binomial theorem to evaluate (10.1)^(5) .

Using binomial theorem, evaluate : (101)^4

If y=1, by using an identity find the value: (5y+(15)/y)(25 y^2-75+(225)/(y^2))

Evaluate : 101^(2) - 100^(2)