Home
Class 9
MATHS
Use identities to evaluate: (502)^(2)...

Use identities to evaluate: `(502)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( (502)^2 \) using identities, we can follow these steps: ### Step 1: Rewrite the expression We can express \( 502 \) as \( 500 + 2 \). Thus, we have: \[ (502)^2 = (500 + 2)^2 \] ### Step 2: Apply the identity We will use the algebraic identity for the square of a binomial: \[ (a + b)^2 = a^2 + 2ab + b^2 \] Here, let \( a = 500 \) and \( b = 2 \). Applying the identity, we get: \[ (500 + 2)^2 = 500^2 + 2 \cdot 500 \cdot 2 + 2^2 \] ### Step 3: Calculate each term Now, we will calculate each term separately: 1. \( 500^2 = 250000 \) 2. \( 2 \cdot 500 \cdot 2 = 2000 \) 3. \( 2^2 = 4 \) ### Step 4: Add all the terms together Now, we sum all the calculated terms: \[ 250000 + 2000 + 4 = 252004 \] ### Final Result Thus, the value of \( (502)^2 \) is: \[ \boxed{252004} \] ---
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Use identities to evaluate: (101)^(2)

Use identities to evaluate: (998)^(2)

Use identities to evaluate: (97)^(2)

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)

Using suitable identity, evaluate: (104)^(3)

Using suitable identity, evaluate: (97)^(3)

Using identities, evaluate. (i) 71^2 (ii) 99^2 (iii) 102^2 (iv) 998^2 (v) 5.2^2 (vi) 297 xx 303 (vii) 78 xx 82 (viii) 892 (ix) 105 xx 95 Type here in ASCII with maths in back tick:

Use direct method to evaluate : (ii) (2 +a) (2-a)

Use direct method to evaluate : (v) (2a + 3) (2a-3)

If y=1, by using an identity find the value: (5y+(15)/y)(25 y^2-75+(225)/(y^2))