Home
Class 9
MATHS
Use identities to evaluate: (998)^(2)...

Use identities to evaluate: `(998)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( (998)^2 \) using identities, we can follow these steps: ### Step-by-Step Solution 1. **Rewrite the expression**: \[ (998)^2 = (1000 - 2)^2 \] 2. **Apply the identity**: We will use the identity \( (x - y)^2 = x^2 - 2xy + y^2 \). Here, \( x = 1000 \) and \( y = 2 \). \[ (1000 - 2)^2 = 1000^2 - 2 \cdot 1000 \cdot 2 + 2^2 \] 3. **Calculate each term**: - Calculate \( 1000^2 \): \[ 1000^2 = 1000000 \] - Calculate \( 2^2 \): \[ 2^2 = 4 \] - Calculate \( 2 \cdot 1000 \cdot 2 \): \[ 2 \cdot 1000 \cdot 2 = 4000 \] 4. **Substitute back into the equation**: \[ (1000 - 2)^2 = 1000000 - 4000 + 4 \] 5. **Combine the terms**: \[ 1000000 - 4000 = 996000 \] \[ 996000 + 4 = 996004 \] Thus, the value of \( (998)^2 \) is \( 996004 \).
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Use identities to evaluate: (97)^(2)

Use identities to evaluate: (502)^(2)

Use identities to evaluate: (101)^(2)

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)

Evaluate i ^998

Using suitable identity, evaluate: (97)^(3)

Using identities, evaluate. (i) 71^2 (ii) 99^2 (iii) 102^2 (iv) 998^2 (v) 5.2^2 (vi) 297 xx 303 (vii) 78 xx 82 (viii) 892 (ix) 105 xx 95 Type here in ASCII with maths in back tick:

Using suitable identity, evaluate: (104)^(3)

Use direct method to evaluate : (ii) (2 +a) (2-a)

If x=-2\ a n d\ y=1, by using an identity find the value: (4y^2-9x^2)(16 y^4+36 x^2y^2+81 x^4)